欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  420330  420338  420344  420348  420354  420356  420360  420366  420368  420374  420380  420384  420386  420390  420396  420398  420404  420408  420410  420414  420416  420420  420422  420424  420425  420426  420428  420429  420430  420432  420434  420438  420440  420444  420446  420450  420456  420458  420464  420468  420470  420474  420480  420486  420488  420494  420498  420500  420506  420510  420516  420524  447090 

24. The hunter calmly picked up his gun,took the aim and fired, ______ the beast.

   A.bringing down B.pulling down  C.falling dowing  D.putting down

試題詳情

23.Hearing that most of the members voted against her, she ______ a smiile.

   A.wore     B. managed   C.performed  trolled

試題詳情

22. It is a strange phenomenon that some young people today think it is their parents’responsibility to earn money and_______ to spend it.

   A.them     B.they     C.their     D.theirs

試題詳情

第一節(jié)     單項(xiàng)填空(共15小題;每小題1分,滿分15分)

從A、B、C、D四個選項(xiàng)中,選出可以填入空白處的最佳選項(xiàng)。

21.. Department of Homeland Security and CIA produced ______ joint report on Monday warning that ______ next 911 could in fact occur on ______ different date.

   A.the; a; the   B.a; the; a   C./; the; the   D.a; /; the

試題詳情

22.(本小題滿分14分)已知△ABC的面積為S,滿足≤S≤3,且·=6,的夾角為θ.

(1)求角θ的取值范圍;

(2)求函數(shù)f(θ)=sin2θ+2sinθ·cosθ+3cos2θ的最小值.

解:(1)由題意知,·=| |·| |cosθ=6,            ①

S=||·||sin(πθ)=||·||sinθ,               ②

由,得=tanθ,即3tanθS.

由≤S≤3,得≤3tanθ≤3,

即≤tanθ≤1.

θ的夾角,

θ∈(0,π],∴θ∈[,].

(2)f(θ)=sin2θ+2sinθ·cosθ+3cos2θ

=1+sin2θ+2cos2θ

=2+sin2θ+cos2θ

=2+sin(2θ+).

θ∈[,],∴2θ+∈[,],

∴當(dāng)2θ+=,即θ=時,f(θ)取得最小值為3.

試題詳情

21.(本小題滿分12分)已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).

(1)若x=,求向量a,c的夾角;

(2)當(dāng)x∈[,]時,求函數(shù)f(x)=2a·b+1的最大值.

解:(1)設(shè)a,c的夾角為θ,當(dāng)x=時,

cos〈a,c〉==

=-cosx=-cos=cos.

∵0≤〈ac〉≤π,∴〈a,c〉=.

(2)f(x)=2a·b+1=2(-cos2x+sinxcosx)+1

=2sinxcosx-(2cos2x-1)=sin2x-cos2x

=sin(2x-).

x∈[,],

∴2x-∈[,2π],

∴sin(2x-)∈[-1,],

∴當(dāng)2x-=,即x=時,f(x)max=1.

試題詳情

20.(本小題滿分12分)在△ABC中,角A、B、C所對的邊長分別為a、b、c,已知向量m=(1,2sinA),n=(sinA,1+cosA),且滿足mn,b+ca.

(1)求角A的大;

(2)求sin的值.

解:(1)∵mn,∴1+cosA=2sin2A,

即2cos2A+cosA-1=0,解得cosA=-1(舍去),cosA=.

又0<Aπ,∴A=.

(2)∵b+ca,

∴由正弦定理可得sinB+sinC=sinA=.

Cπ-(A+B)=-B,∴sinB+sin=,

即sinB+cosB=,∴sin=.

試題詳情

19.(本小題滿分12分)已知向量a=(cos(-θ),sin(-θ)),b=(cos(-θ),sin(-θ)).

(1)求證:ab;

(2)若存在不等于0的實(shí)數(shù)kt,使xa+(t2+3)b,

y=-ka+tb,滿足xy,試求此時的最小值.

解:(1)證明:∵a·b

=cos(-θ)·cos(-θ)+sin(-θ)·sin(-θ)

=sinθcosθ-sinθcosθ=0.

ab.

(2)由xy得:x·y=0,

即[a+(t2+3)b]·(-ka+tb)=0,

∴-ka2+(t3+3t)b2+[tk(t2+3)]a·b=0,

∴-k|a|2+(t3+3t)|b|2=0.

又|a|2=1,|b|2=1,

∴-k+t3+3t=0,∴kt3+3t.

∴==t2+t+3=(t+)2+.

故當(dāng)t=-時,有最小值.

試題詳情


同步練習(xí)冊答案