欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  420240  420248  420254  420258  420264  420266  420270  420276  420278  420284  420290  420294  420296  420300  420306  420308  420314  420318  420320  420324  420326  420330  420332  420334  420335  420336  420338  420339  420340  420342  420344  420348  420350  420354  420356  420360  420366  420368  420374  420378  420380  420384  420390  420396  420398  420404  420408  420410  420416  420420  420426  420434  447090 

2、1956年-1966年被稱為“文藝學(xué)術(shù)發(fā)展的春天”

這一時期文學(xué)藝術(shù)碩果累累。出現(xiàn)這一局面的

主要原因是

A.“雙百”方針的貫徹             

B.廣大知識分子的辛勤勞動

C.社會生活的豐富多彩,文藝創(chuàng)作素材豐富   

D.全國知識分子會議的召開

試題詳情

1、右圖為恢復(fù)高考制度以來報考與錄取人數(shù)變化示意圖。此圖不能反映

A.高等教育越來越受到民眾重視

B.高等教育由精英教育逐步發(fā)展為大眾教育

C.文革嚴(yán)重影響了高校正常招生

D.高等教育質(zhì)量不斷提升

試題詳情

31. 解:(1)如圖所示:······························································································ 4分

 

(注:正確畫出1個圖得2分,無作圖痕跡或痕跡不正確不得分)

(2)若三角形為銳角三角形,則其最小覆蓋圓為其外接圓;········································ 6分

若三角形為直角或鈍角三角形,則其最小覆蓋圓是以三角形最長邊(直角或鈍角所對的邊)為直徑的圓.    8分

(3)此中轉(zhuǎn)站應(yīng)建在的外接圓圓心處(線段的垂直平分線與線段的垂直平分線的交點(diǎn)處).    10分

理由如下:

,

是銳角三角形,

所以其最小覆蓋圓為的外接圓,

設(shè)此外接圓為,直線交于點(diǎn)

故點(diǎn)內(nèi),從而也是四邊形的最小覆蓋圓.

所以中轉(zhuǎn)站建在的外接圓圓心處,能夠符合題中要求.

························································································ 12分

試題詳情

29. 解:(1)將圖1中的正方形等分成如圖的四個小正方形,將這4個轉(zhuǎn)發(fā)裝置安裝在這4個小正方形對角線的交點(diǎn)處,此時,每個小正方形的對角線長為,每個轉(zhuǎn)發(fā)裝置都能完全覆蓋一個小正方形區(qū)域,故安裝4個這種裝置可以達(dá)到預(yù)設(shè)的要求.

····················· (3分)(圖案設(shè)計不唯一)

(2)將原正方形分割成如圖2中的3個矩形,使得.將每個裝置安裝在這些矩形的對角線交點(diǎn)處,設(shè),則,

,得

,

即如此安裝3個這種轉(zhuǎn)發(fā)裝置,也能達(dá)到預(yù)設(shè)要求.·············································· (6分)

或:將原正方形分割成如圖2中的3個矩形,使得,的中點(diǎn),將每個裝置安裝在這些矩形的對角線交點(diǎn)處,則,, ,即如此安裝三個這個轉(zhuǎn)發(fā)裝置,能達(dá)到預(yù)設(shè)要求.···················································································· (6分)

要用兩個圓覆蓋一個正方形,則一個圓至少要經(jīng)過正方形相鄰兩個頂點(diǎn).如圖3,用一個直徑為31的去覆蓋邊長為30的正方形,設(shè)經(jīng)過,交于,連,則,這說明用兩個直徑都為31的圓不能完全覆蓋正方形

所以,至少要安裝3個這種轉(zhuǎn)發(fā)裝置,才能達(dá)到預(yù)設(shè)要求.··································· (8分)

評分說明:示意圖(圖1、圖2、圖3)每個圖1分.

 

30解:(1);,

(2)設(shè)存在實數(shù),使拋物線上有一點(diǎn),滿足以為頂點(diǎn)的三角形與等腰直角相似.

為頂點(diǎn)的三角形為等腰直角三角形,且這樣的三角形最多只有兩類,一類是以為直角邊的等腰直角三角形,另一類是以為斜邊的等腰直角三角形.

①若為等腰直角三角形的直角邊,則

由拋物線得:,

,的坐標(biāo)為

代入拋物線解析式,得

拋物線解析式為

②若為等腰直角三角形的斜邊,

,

的坐標(biāo)為

代入拋物線解析式,得

拋物線解析式為,即

當(dāng)時,在拋物線上存在一點(diǎn)滿足條件,如果此拋物線上還有滿足條件的點(diǎn),不妨設(shè)為點(diǎn),那么只有可能是以為斜邊的等腰直角三角形,由此得,顯然不在拋物線上,因此拋物線上沒有符合條件的其他的點(diǎn).

當(dāng)時,同理可得拋物線上沒有符合條件的其他的點(diǎn).

當(dāng)的坐標(biāo)為,對應(yīng)的拋物線解析式為時,

都是等腰直角三角形,

,

,總滿足

當(dāng)的坐標(biāo)為,對應(yīng)的拋物線解析式為時,

同理可證得:,總滿足

試題詳情

28. 解:(1)∵D(-8,0),∴B點(diǎn)的橫坐標(biāo)為-8,代入中,得y=-2.

∴B點(diǎn)坐標(biāo)為(-8,-2).而A、B兩點(diǎn)關(guān)于原點(diǎn)對稱,∴A(8,2)

從而k=8×2=16

(2)∵N(0,-n),B是CD的中點(diǎn),A,B,M,E四點(diǎn)均在雙曲線上,

∴mn=k,B(-2m,-),C(-2m,-n),E(-m,-n)

=2mn=2k,mn=k,mn=k.

=k.∴k=4.

由直線及雙曲線,得A(4,1),B(-4,-1)

∴C(-4,-2),M(2,2)

設(shè)直線CM的解析式是,由C、M兩點(diǎn)在這條直線上,得

,解得a=b=

∴直線CM的解析式是y=x+.

(3)如圖,分別作AA1⊥x軸,MM1⊥x軸,垂足分別為A1,M1

設(shè)A點(diǎn)的橫坐標(biāo)為a,則B點(diǎn)的橫坐標(biāo)為-a.于是

同理

∴p-q==-2

試題詳情

27. 解:(1)由題意:BP=tcm,AQ=2tcm,則CQ=(4-2t)cm,

∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm

∴AP=(5-t)cm,

∵PQ∥BC,∴△APQ∽△ABC,

∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=

∴當(dāng)t為秒時,PQ∥BC

………………2分

(2)過點(diǎn)Q作QD⊥AB于點(diǎn)D,則易證△AQD∽△ABC

∴AQ∶QD=AB∶BC

∴2t∶DQ=5∶3,∴DQ=

∴△APQ的面積:×AP×QD=(5-t)×

∴y與t之間的函數(shù)關(guān)系式為:y=

………………5分

(3)由題意:

   當(dāng)面積被平分時有:××3×4,解得:t=

   當(dāng)周長被平分時:(5-t)+2t=t+(4-2t)+3,解得:t=1

∴不存在這樣t的值

………………8分

(4)過點(diǎn)P作PE⊥BC于E

  易證:△PAE∽△ABC,當(dāng)PE=QC時,△PQC為等腰三角形,此時△QCP′為菱形

∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=

∵QC=4-2t,∴2×=4-2t,解得:t=

∴當(dāng)t=時,四邊形PQP′C為菱形

此時,PE=,BE=,∴CE=

………………10分

在Rt△CPE中,根據(jù)勾股定理可知:PC=

∴此菱形的邊長為cm   ………………12分

試題詳情

26. 解:方案一:由題意可得:

點(diǎn)到甲村的最短距離為.······································································· (1分)

點(diǎn)到乙村的最短距離為

將供水站建在點(diǎn)處時,管道沿鐵路建設(shè)的長度之和最。

即最小值為.········································································ (3分)

方案二:如圖①,作點(diǎn)關(guān)于射線的對稱點(diǎn),則,連接于點(diǎn),則

,.·········································································· (4分)

中,

,

兩點(diǎn)重合.即點(diǎn).············································· (6分)

在線段上任取一點(diǎn),連接,則

,

把供水站建在乙村的點(diǎn)處,管道沿線路鋪設(shè)的長度之和最。

即最小值為.··········· (7分)

方案三:作點(diǎn)關(guān)于射線的對稱點(diǎn),連接,則

于點(diǎn),交于點(diǎn),交于點(diǎn)

為點(diǎn)的最短距離,即

中,,,

,兩點(diǎn)重合,即點(diǎn).

中,,.············································· (10分)

在線段上任取一點(diǎn),過于點(diǎn),連接

顯然

把供水站建在甲村的處,管道沿線路鋪設(shè)的長度之和最。

即最小值為.································································ (11分)

綜上,,供水站建在處,所需鋪設(shè)的管道長度最短.········ (12分)

試題詳情

25. 解:(1)取中點(diǎn),聯(lián)結(jié)

的中點(diǎn),,.································· (1分)

.··········································································· (1分)

,得;······································ (2分)(1分)

(2)由已知得.··································································· (1分)

以線段為直徑的圓與以線段為直徑的圓外切,

,即.·························· (2分)

解得,即線段的長為;······································································· (1分)

(3)由已知,以為頂點(diǎn)的三角形與相似,

又易證得.··············································································· (1分)

由此可知,另一對對應(yīng)角相等有兩種情況:①;②

①當(dāng)時,,

,易得.得;······················································· (2分)

②當(dāng)時,

.又,

,即,得

解得,(舍去).即線段的長為2.········································ (2分)

綜上所述,所求線段的長為8或2.

試題詳情

24. 解:(1)∵點(diǎn)上,

,

.

(2)連結(jié), 由題意易知

.

(3)正方形AEFG在繞A點(diǎn)旋轉(zhuǎn)的過程中,F點(diǎn)的軌跡是以點(diǎn)A為圓心,AF為半徑的圓.

第一種情況:當(dāng)b>2a時,存在最大值及最小值;

因為的邊,故當(dāng)F點(diǎn)到BD的距離取得最大、最小值時,取得最大、最小值.

如圖②所示時,

的最大值=

的最小值=

第二種情況:當(dāng)b=2a時,存在最大值,不存在最小值;

的最大值=.(如果答案為4a2b2也可)

 

試題詳情

23. 解(Ⅰ)當(dāng),時,拋物線為,

方程的兩個根為

∴該拋物線與軸公共點(diǎn)的坐標(biāo)是.  ················································ 2分

(Ⅱ)當(dāng)時,拋物線為,且與軸有公共點(diǎn).

對于方程,判別式≥0,有. ········································ 3分

①當(dāng)時,由方程,解得

此時拋物線為軸只有一個公共點(diǎn).································· 4分

②當(dāng)時,

時,

時,

由已知時,該拋物線與軸有且只有一個公共點(diǎn),考慮其對稱軸為,

應(yīng)有  即

解得

綜上,.   ················································································ 6分

(Ⅲ)對于二次函數(shù),

由已知時,;時,,

,∴

于是.而,∴,即

.  ············································································································  7分

∵關(guān)于的一元二次方程的判別式

,   

∴拋物線軸有兩個公共點(diǎn),頂點(diǎn)在軸下方.····························· 8分

又該拋物線的對稱軸,

,,

,

又由已知時,;時,,觀察圖象,

可知在范圍內(nèi),該拋物線與軸有兩個公共點(diǎn). ············································ 10分

試題詳情


同步練習(xí)冊答案