欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

 0  420239  420247  420253  420257  420263  420265  420269  420275  420277  420283  420289  420293  420295  420299  420305  420307  420313  420317  420319  420323  420325  420329  420331  420333  420334  420335  420337  420338  420339  420341  420343  420347  420349  420353  420355  420359  420365  420367  420373  420377  420379  420383  420389  420395  420397  420403  420407  420409  420415  420419  420425  420433  447090 

22. 解:( 1)由已知得:解得

c=3,b=2

∴拋物線的線的解析式為

(2)由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo)為(1,4)

所以對(duì)稱軸為x=1,A,E關(guān)于x=1對(duì)稱,所以E(3,0)

設(shè)對(duì)稱軸與x軸的交點(diǎn)為F

所以四邊形ABDE的面積=

=

=

=9

(3)相似

如圖,BD=

BE=

DE=

所以, 即: ,所以是直角三角形

所以,且,

所以.

試題詳情

21.解:

(1)m=-5,n=-3

  (2)y=x+2

(3)是定值.

因?yàn)辄c(diǎn)D為∠ACB的平分線,所以可設(shè)點(diǎn)D到邊AC,BC的距離均為h,

設(shè)△ABC AB邊上的高為H,

則利用面積法可得:

(CM+CN)h=MN﹒H

又 H=

化簡(jiǎn)可得  (CM+CN)﹒

    

試題詳情

20. 解:(1)如圖,過(guò)點(diǎn)B作BD⊥OA于點(diǎn)D.

    在Rt△ABD中,

    ∵∣AB∣=,sin∠OAB=,

    ∴∣BD∣=∣AB∣·sin∠OAB

        =×=3.

又由勾股定理,得

  

     

∴∣OD∣=∣OA∣-∣AD∣=10-6=4.

∵點(diǎn)B在第一象限,∴點(diǎn)B的坐標(biāo)為(4,3).             ……3分

設(shè)經(jīng)過(guò)O(0,0)、C(4,-3)、A(10,0)三點(diǎn)的拋物線的函數(shù)表達(dá)式為

   y=ax2+bx(a≠0).

∴經(jīng)過(guò)O、C、A三點(diǎn)的拋物線的函數(shù)表達(dá)式為       ……2分

(2)假設(shè)在(1)中的拋物線上存在點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為梯形

  ①∵點(diǎn)C(4,-3)不是拋物線的頂點(diǎn),

∴過(guò)點(diǎn)C做直線OA的平行線與拋物線交于點(diǎn)P1  .

則直線CP1的函數(shù)表達(dá)式為y=-3.

對(duì)于,令y=-3x=4或x=6.

而點(diǎn)C(4,-3),∴P1(6,-3).

在四邊形P1AOC中,CP1∥OA,顯然∣CP1∣≠∣OA∣.

∴點(diǎn)P1(6,-3)是符合要求的點(diǎn).                  ……1分

②若AP2∥CO.設(shè)直線CO的函數(shù)表達(dá)式為

  將點(diǎn)C(4,-3)代入,得

∴直線CO的函數(shù)表達(dá)式為

  于是可設(shè)直線AP2的函數(shù)表達(dá)式為

將點(diǎn)A(10,0)代入,得

∴直線AP2的函數(shù)表達(dá)式為

,即(x-10)(x+6)=0.

而點(diǎn)A(10,0),∴P2(-6,12).

過(guò)點(diǎn)P2作P2E⊥x軸于點(diǎn)E,則∣P2E∣=12.

在Rt△AP2E中,由勾股定理,得

而∣CO∣=∣OB∣=5.

∴在四邊形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.

∴點(diǎn)P2(-6,12)是符合要求的點(diǎn).                    ……1分

③若OP3∥CA,設(shè)直線CA的函數(shù)表達(dá)式為y=k2x+b2

  將點(diǎn)A(10,0)、C(4,-3)代入,得

∴直線CA的函數(shù)表達(dá)式為

∴直線OP3的函數(shù)表達(dá)式為

即x(x-14)=0.

而點(diǎn)O(0,0),∴P3(14,7).

過(guò)點(diǎn)P3作P3E⊥x軸于點(diǎn)E,則∣P3E∣=7.

在Rt△OP3E中,由勾股定理,得

而∣CA∣=∣AB∣=.

∴在四邊形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.

∴點(diǎn)P3(14,7)是符合要求的點(diǎn).                    ……1分

綜上可知,在(1)中的拋物線上存在點(diǎn)P1(6,-3)、P2(-6,12)、P3(14,7),

使以P、O、C、A為頂點(diǎn)的四邊形為梯形.                 ……1分

(3)由題知,拋物線的開(kāi)口可能向上,也可能向下.

 ①當(dāng)拋物線開(kāi)口向上時(shí),則此拋物線與y軸的副半軸交與點(diǎn)N.

可設(shè)拋物線的函數(shù)表達(dá)式為(a>0).

如圖,過(guò)點(diǎn)M作MG⊥x軸于點(diǎn)G.

∵Q(-2k,0)、R(5k,0)、G(、N(0,-10ak2)、M

     

    

                ……2分

②當(dāng)拋物線開(kāi)口向下時(shí),則此拋物線與y軸的正半軸交于點(diǎn)N,

  同理,可得                     ……1分

綜上所知,的值為3:20.                   ……1分

試題詳情

19. 解:(1)在中,令

,

····················································· 1分

點(diǎn)

的解析式為···················································································· 2分

(2)由,得  ·························································· 4分

,

,····································································································· 5分

······························································································· 6分

(3)過(guò)點(diǎn)于點(diǎn)

····································································································· 7分

················································································································ 8分

由直線可得:

中,,則

····························································································· 9分

·························································································· 10分

··································································································· 11分

此拋物線開(kāi)口向下,當(dāng)時(shí),

當(dāng)點(diǎn)運(yùn)動(dòng)2秒時(shí),的面積達(dá)到最大,最大為.   

試題詳情

18. 解:(1)點(diǎn)軸上························································································· 1分

理由如下:

連接,如圖所示,在中,,

,

由題意可知:

點(diǎn)軸上,點(diǎn)軸上.············································································ 3分

(2)過(guò)點(diǎn)軸于點(diǎn)

,

中,,

點(diǎn)在第一象限,

點(diǎn)的坐標(biāo)為····························································································· 5分

由(1)知,點(diǎn)軸的正半軸上

點(diǎn)的坐標(biāo)為

點(diǎn)的坐標(biāo)為······························································································· 6分

拋物線經(jīng)過(guò)點(diǎn)

由題意,將代入中得

  解得

所求拋物線表達(dá)式為:·························································· 9分

(3)存在符合條件的點(diǎn),點(diǎn).············································································ 10分

理由如下:矩形的面積

為頂點(diǎn)的平行四邊形面積為

由題意可知為此平行四邊形一邊,

邊上的高為2······································································································ 11分

依題意設(shè)點(diǎn)的坐標(biāo)為

點(diǎn)在拋物線

解得,,

,

為頂點(diǎn)的四邊形是平行四邊形,

當(dāng)點(diǎn)的坐標(biāo)為時(shí),

點(diǎn)的坐標(biāo)分別為,;

當(dāng)點(diǎn)的坐標(biāo)為時(shí),

點(diǎn)的坐標(biāo)分別為.·················································· 14分

(以上答案僅供參考,如有其它做法,可參照給分)

試題詳情

17. 解:(1)直線軸交于點(diǎn),與軸交于點(diǎn)

······························································································· 1分

點(diǎn)都在拋物線上,

 

拋物線的解析式為······························································ 3分

頂點(diǎn)····································································································· 4分

(2)存在····················································································································· 5分

··················································································································· 7分

·················································································································· 9分

(3)存在···················································································································· 10分

理由:

解法一:

延長(zhǎng)到點(diǎn),使,連接交直線于點(diǎn),則點(diǎn)就是所求的點(diǎn).

            ··························································································· 11分

過(guò)點(diǎn)于點(diǎn)

點(diǎn)在拋物線上,

中,,

,,

中,,

,,····················································· 12分

設(shè)直線的解析式為

  解得

······································································································ 13分

  解得 

在直線上存在點(diǎn),使得的周長(zhǎng)最小,此時(shí).········· 14分

解法二:

過(guò)點(diǎn)的垂線交軸于點(diǎn),則點(diǎn)為點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).連接于點(diǎn),則點(diǎn)即為所求.···················································································· 11分

過(guò)點(diǎn)軸于點(diǎn),則,

,

同方法一可求得

中,,,可求得,

為線段的垂直平分線,可證得為等邊三角形,

垂直平分

即點(diǎn)為點(diǎn)關(guān)于的對(duì)稱點(diǎn).··················································· 12分

設(shè)直線的解析式為,由題意得

  解得

······································································································ 13分

  解得 

在直線上存在點(diǎn),使得的周長(zhǎng)最小,此時(shí).   1

試題詳情

16.

解:(1),

(2)當(dāng)時(shí),過(guò)點(diǎn)作,交,如圖1,

,,

,

(3)①能與平行.

,如圖2,則

,,而,

不能與垂直.

,延長(zhǎng),如圖3,

,,

,

,而

不存在.

試題詳情

15. 解:(1)解法1:根據(jù)題意可得:A(-1,0),B(3,0);

則設(shè)拋物線的解析式為(a≠0)

又點(diǎn)D(0,-3)在拋物線上,∴a(0+1)(0-3)=-3,解之得:a=1

 ∴y=x2-2x-3···································································································· 3分

自變量范圍:-1≤x≤3···················································································· 4分

      解法2:設(shè)拋物線的解析式為(a≠0)

          根據(jù)題意可知,A(-1,0),B(3,0),D(0,-3)三點(diǎn)都在拋物線上

          ∴,解之得:

y=x2-2x-3··············································································· 3分

自變量范圍:-1≤x≤3······························································ 4分

      (2)設(shè)經(jīng)過(guò)點(diǎn)C“蛋圓”的切線CEx軸于點(diǎn)E,連結(jié)CM,

       在RtMOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=

       在RtMCE中,∵OC=2,∠CMO=60°,∴ME=4

 ∴點(diǎn)C、E的坐標(biāo)分別為(0,),(-3,0) ·················································· 6分

∴切線CE的解析式為··························································· 8分

(3)設(shè)過(guò)點(diǎn)D(0,-3),“蛋圓”切線的解析式為:y=kx-3(k≠0) ·························· 9分

        由題意可知方程組只有一組解

  即有兩個(gè)相等實(shí)根,∴k=-2············································· 11分

  ∴過(guò)點(diǎn)D“蛋圓”切線的解析式y=-2x-3····················································· 12分

試題詳情

14. 解:(1)由題意可知,

解,得 m=3.     ………………………………3分

A(3,4),B(6,2);

k=4×3=12.    ……………………………4分

(2)存在兩種情況,如圖: 

①當(dāng)M點(diǎn)在x軸的正半軸上,N點(diǎn)在y軸的正半軸

上時(shí),設(shè)M1點(diǎn)坐標(biāo)為(x1,0),N1點(diǎn)坐標(biāo)為(0,y1).

∵ 四邊形AN1M1B為平行四邊形,

∴ 線段N1M1可看作由線段AB向左平移3個(gè)單位,

再向下平移2個(gè)單位得到的(也可看作向下平移2個(gè)單位,再向左平移3個(gè)單位得到的).

由(1)知A點(diǎn)坐標(biāo)為(3,4),B點(diǎn)坐標(biāo)為(6,2),

N1點(diǎn)坐標(biāo)為(0,4-2),即N1(0,2);    ………………………………5分

M1點(diǎn)坐標(biāo)為(6-3,0),即M1(3,0).    ………………………………6分

設(shè)直線M1N1的函數(shù)表達(dá)式為,把x=3,y=0代入,解得

∴ 直線M1N1的函數(shù)表達(dá)式為. ……………………………………8分

②當(dāng)M點(diǎn)在x軸的負(fù)半軸上,N點(diǎn)在y軸的負(fù)半軸上時(shí),設(shè)M2點(diǎn)坐標(biāo)為(x2,0),N2點(diǎn)坐標(biāo)為(0,y2). 

ABN1M1ABM2N2,ABN1M1ABM2N2,

N1M1M2N2N1M1M2N2.  

∴ 線段M2N2與線段N1M1關(guān)于原點(diǎn)O成中心對(duì)稱.   

M2點(diǎn)坐標(biāo)為(-3,0),N2點(diǎn)坐標(biāo)為(0,-2).   ………………………9分

設(shè)直線M2N2的函數(shù)表達(dá)式為,把x=-3,y=0代入,解得,

∴ 直線M2N2的函數(shù)表達(dá)式為.   

所以,直線MN的函數(shù)表達(dá)式為.  ………………11分

(3)選做題:(9,2),(4,5).  ………………………………………………2分

試題詳情

13. 解:(1)分別過(guò)D,C兩點(diǎn)作DGAB于點(diǎn)G,CHAB于點(diǎn)H. ……………1分

ABCD, 

DGCHDGCH. 

∴ 四邊形DGHC為矩形,GHCD=1. 

DGCH,ADBC,∠AGD=∠BHC=90°,

∴ △AGD≌△BHC(HL). 

AGBH=3.  ………2分

∵ 在Rt△AGD中,AG=3,AD=5, 

DG=4.                

.    ………………………………………………3分

(2)∵ MNABMEAB,NFAB, 

MENF,MENF. 

∴ 四邊形MEFN為矩形. 

ABCD,ADBC,  

∴ ∠A=∠B. 

MENF,∠MEA=∠NFB=90°,  

∴ △MEA≌△NFB(AAS).

AEBF.     ……………………4分 

設(shè)AEx,則EF=7-2x.  ……………5分 

∵ ∠A=∠A,∠MEA=∠DGA=90°,  

∴ △MEA∽△DGA

ME.     …………………………………………………………6分

.  ……………………8分

當(dāng)x時(shí),ME<4,∴四邊形MEFN面積的最大值為.……………9分

(3)能.   ……………………………………………………………………10分

由(2)可知,設(shè)AEx,則EF=7-2x,ME. 

若四邊形MEFN為正方形,則MEEF. 

   即 7-2x.解,得 .  ……………………………………………11分

EF<4. 

∴ 四邊形MEFN能為正方形,其面積為

試題詳情


同步練習(xí)冊(cè)答案