22. 解:( 1)由已知得:![]()
解得
c=3,b=2
∴拋物線的線的解析式為![]()
(2)由頂點(diǎn)坐標(biāo)公式得頂點(diǎn)坐標(biāo)為(1,4)
所以對(duì)稱軸為x=1,A,E關(guān)于x=1對(duì)稱,所以E(3,0)
設(shè)對(duì)稱軸與x軸的交點(diǎn)為F
所以四邊形ABDE的面積=![]()
=![]()
=![]()
=9
(3)相似
如圖,BD=![]()
BE=![]()
DE=![]()
所以
,
即:
,所以
是直角三角形
所以
,且
,
所以
.
21.解:
(1)m=-5,n=-3
(2)y=
x+2
(3)是定值.
因?yàn)辄c(diǎn)D為∠ACB的平分線,所以可設(shè)點(diǎn)D到邊AC,BC的距離均為h,
設(shè)△ABC AB邊上的高為H,
則利用面積法可得:
![]()
(CM+CN)h=MN﹒H
![]()
又 H=![]()
化簡(jiǎn)可得 (CM+CN)﹒![]()
故
20. 解:(1)如圖,過(guò)點(diǎn)B作BD⊥OA于點(diǎn)D.
在Rt△ABD中,
∵∣AB∣=
,sin∠OAB=
,
∴∣BD∣=∣AB∣·sin∠OAB
=
×
=3.
又由勾股定理,得
![]()
![]()
∴∣OD∣=∣OA∣-∣AD∣=10-6=4.
∵點(diǎn)B在第一象限,∴點(diǎn)B的坐標(biāo)為(4,3). ……3分
設(shè)經(jīng)過(guò)O(0,0)、C(4,-3)、A(10,0)三點(diǎn)的拋物線的函數(shù)表達(dá)式為
y=ax2+bx(a≠0).
由![]()
∴經(jīng)過(guò)O、C、A三點(diǎn)的拋物線的函數(shù)表達(dá)式為
……2分
(2)假設(shè)在(1)中的拋物線上存在點(diǎn)P,使以P、O、C、A為頂點(diǎn)的四邊形為梯形
①∵點(diǎn)C(4,-3)不是拋物線
的頂點(diǎn),
∴過(guò)點(diǎn)C做直線OA的平行線與拋物線交于點(diǎn)P1 .
則直線CP1的函數(shù)表達(dá)式為y=-3.
對(duì)于
,令y=-3
x=4或x=6.
∴![]()
而點(diǎn)C(4,-3),∴P1(6,-3).
在四邊形P1AOC中,CP1∥OA,顯然∣CP1∣≠∣OA∣.
∴點(diǎn)P1(6,-3)是符合要求的點(diǎn). ……1分
②若AP2∥CO.設(shè)直線CO的函數(shù)表達(dá)式為![]()
將點(diǎn)C(4,-3)代入,得![]()
∴直線CO的函數(shù)表達(dá)式為![]()
于是可設(shè)直線AP2的函數(shù)表達(dá)式為![]()
將點(diǎn)A(10,0)代入,得![]()
∴直線AP2的函數(shù)表達(dá)式為![]()
由
,即(x-10)(x+6)=0.
∴![]()
而點(diǎn)A(10,0),∴P2(-6,12).
過(guò)點(diǎn)P2作P2E⊥x軸于點(diǎn)E,則∣P2E∣=12.
在Rt△AP2E中,由勾股定理,得
![]()
而∣CO∣=∣OB∣=5.
∴在四邊形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.
∴點(diǎn)P2(-6,12)是符合要求的點(diǎn). ……1分
③若OP3∥CA,設(shè)直線CA的函數(shù)表達(dá)式為y=k2x+b2
將點(diǎn)A(10,0)、C(4,-3)代入,得
![]()
∴直線CA的函數(shù)表達(dá)式為![]()
∴直線OP3的函數(shù)表達(dá)式為![]()
由
即x(x-14)=0.
∴![]()
而點(diǎn)O(0,0),∴P3(14,7).
過(guò)點(diǎn)P3作P3E⊥x軸于點(diǎn)E,則∣P3E∣=7.
在Rt△OP3E中,由勾股定理,得
![]()
而∣CA∣=∣AB∣=
.
∴在四邊形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.
∴點(diǎn)P3(14,7)是符合要求的點(diǎn). ……1分
綜上可知,在(1)中的拋物線上存在點(diǎn)P1(6,-3)、P2(-6,12)、P3(14,7),
使以P、O、C、A為頂點(diǎn)的四邊形為梯形. ……1分
(3)由題知,拋物線的開(kāi)口可能向上,也可能向下.
①當(dāng)拋物線開(kāi)口向上時(shí),則此拋物線與y軸的副半軸交與點(diǎn)N.
可設(shè)拋物線的函數(shù)表達(dá)式為
(a>0).
即![]()
![]()
如圖,過(guò)點(diǎn)M作MG⊥x軸于點(diǎn)G.
∵Q(-2k,0)、R(5k,0)、G(
、N(0,-10ak2)、M![]()
∴![]()
![]()
![]()
![]()
![]()
![]()
∴
……2分
②當(dāng)拋物線開(kāi)口向下時(shí),則此拋物線與y軸的正半軸交于點(diǎn)N,
同理,可得
……1分
綜上所知,
的值為3:20.
……1分
19. 解:(1)在
中,令![]()
![]()
![]()
,![]()
,
····················································· 1分
又
點(diǎn)
在
上
![]()
![]()
的解析式為
···················································································· 2分
(2)由
,得
·························································· 4分
,![]()
,
····································································································· 5分
······························································································· 6分
(3)過(guò)點(diǎn)
作
于點(diǎn)![]()
![]()
![]()
····································································································· 7分
················································································································ 8分
由直線
可得:![]()
在
中,
,
,則![]()
,
····························································································· 9分
![]()
·························································································· 10分
··································································································· 11分
此拋物線開(kāi)口向下,
當(dāng)
時(shí),![]()
當(dāng)點(diǎn)
運(yùn)動(dòng)2秒時(shí),
的面積達(dá)到最大,最大為
.
18. 解:(1)點(diǎn)
在
軸上························································································· 1分
理由如下:
連接
,如圖所示,在
中,
,
,![]()
,![]()
由題意可知:![]()
![]()
點(diǎn)
在
軸上,
點(diǎn)
在
軸上.············································································ 3分
(2)過(guò)點(diǎn)
作
軸于點(diǎn)![]()
,![]()
在
中,
,![]()
點(diǎn)
在第一象限,
點(diǎn)
的坐標(biāo)為
····························································································· 5分
由(1)知
,點(diǎn)
在
軸的正半軸上
點(diǎn)
的坐標(biāo)為![]()
點(diǎn)
的坐標(biāo)為
······························································································· 6分
拋物線
經(jīng)過(guò)點(diǎn)
,
![]()
由題意,將
,
代入
中得
解得![]()
所求拋物線表達(dá)式為:
·························································· 9分
(3)存在符合條件的點(diǎn)
,點(diǎn)
.············································································ 10分
理由如下:
矩形
的面積![]()
以
為頂點(diǎn)的平行四邊形面積為
.
由題意可知
為此平行四邊形一邊,
又![]()
邊上的高為2······································································································ 11分
依題意設(shè)點(diǎn)
的坐標(biāo)為![]()
點(diǎn)
在拋物線
上
![]()
解得,
,![]()
,![]()
以
為頂點(diǎn)的四邊形是平行四邊形,
![]()
,
,
當(dāng)點(diǎn)
的坐標(biāo)為
時(shí),
點(diǎn)
的坐標(biāo)分別為
,
;
當(dāng)點(diǎn)
的坐標(biāo)為
時(shí),
點(diǎn)
的坐標(biāo)分別為
,
.·················································· 14分
(以上答案僅供參考,如有其它做法,可參照給分)
17. 解:(1)
直線
與
軸交于點(diǎn)
,與
軸交于點(diǎn)
.
,
······························································································· 1分
點(diǎn)
都在拋物線上,
![]()
拋物線的解析式為
······························································ 3分
頂點(diǎn)
····································································································· 4分
(2)存在····················································································································· 5分
··················································································································· 7分
·················································································································· 9分
(3)存在···················································································································· 10分
理由:
解法一:
延長(zhǎng)
到點(diǎn)
,使
,連接
交直線
于點(diǎn)
,則點(diǎn)
就是所求的點(diǎn).
··························································································· 11分
過(guò)點(diǎn)
作
于點(diǎn)
.
點(diǎn)在拋物線
上,![]()
在
中,
,
,
,
在
中,
,
,
,
····················································· 12分
設(shè)直線
的解析式為![]()
解得![]()
······································································································ 13分
解得
![]()
在直線
上存在點(diǎn)
,使得
的周長(zhǎng)最小,此時(shí)
.········· 14分
解法二:
過(guò)點(diǎn)
作
的垂線交
軸于點(diǎn)
,則點(diǎn)
為點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn).連接
交
于點(diǎn)
,則點(diǎn)
即為所求.···················································································· 11分
過(guò)點(diǎn)
作
軸于點(diǎn)
,則
,
.
,![]()
![]()
同方法一可求得
.
在
中,
,
,可求得
,
為線段
的垂直平分線,可證得
為等邊三角形,
垂直平分
.
即點(diǎn)
為點(diǎn)
關(guān)于
的對(duì)稱點(diǎn).
··················································· 12分
設(shè)直線
的解析式為
,由題意得
解得![]()
······································································································ 13分
解得
![]()
在直線
上存在點(diǎn)
,使得
的周長(zhǎng)最小,此時(shí)
. 1
16.
解:(1)
,
.
![]()
![]()
(2)當(dāng)
時(shí),過(guò)
點(diǎn)作
,交
于
,如圖1,
則
,
,
,
.
(3)①
能與
平行.
若
,如圖2,則
,
即
,
,而
,
.
②
不能與
垂直.
若
,延長(zhǎng)
交
于
,如圖3,
則
.
.
![]()
![]()
.
又
,
,
,
,而
,
不存在.
15. 解:(1)解法1:根據(jù)題意可得:A(-1,0),B(3,0);
則設(shè)拋物線的解析式為
(a≠0)
又點(diǎn)D(0,-3)在拋物線上,∴a(0+1)(0-3)=-3,解之得:a=1
∴y=x2-2x-3···································································································· 3分
自變量范圍:-1≤x≤3···················································································· 4分
解法2:設(shè)拋物線的解析式為
(a≠0)
根據(jù)題意可知,A(-1,0),B(3,0),D(0,-3)三點(diǎn)都在拋物線上
∴
,解之得:![]()
∴y=x2-2x-3··············································································· 3分
自變量范圍:-1≤x≤3······························································ 4分
(2)設(shè)經(jīng)過(guò)點(diǎn)C“蛋圓”的切線CE交x軸于點(diǎn)E,連結(jié)CM,
在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=![]()
在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4
∴點(diǎn)C、E的坐標(biāo)分別為(0,
),(-3,0) ·················································· 6分
∴切線CE的解析式為
··························································· 8分
(3)設(shè)過(guò)點(diǎn)D(0,-3),“蛋圓”切線的解析式為:y=kx-3(k≠0) ·························· 9分
由題意可知方程組
只有一組解
即
有兩個(gè)相等實(shí)根,∴k=-2············································· 11分
∴過(guò)點(diǎn)D“蛋圓”切線的解析式y=-2x-3····················································· 12分
14.
解:(1)由題意可知,
.
解,得 m=3. ………………………………3分
∴ A(3,4),B(6,2);
∴ k=4×3=12. ……………………………4分
(2)存在兩種情況,如圖:
①當(dāng)M點(diǎn)在x軸的正半軸上,N點(diǎn)在y軸的正半軸
上時(shí),設(shè)M1點(diǎn)坐標(biāo)為(x1,0),N1點(diǎn)坐標(biāo)為(0,y1).
∵ 四邊形AN1M1B為平行四邊形,
∴ 線段N1M1可看作由線段AB向左平移3個(gè)單位,
再向下平移2個(gè)單位得到的(也可看作向下平移2個(gè)單位,再向左平移3個(gè)單位得到的).
由(1)知A點(diǎn)坐標(biāo)為(3,4),B點(diǎn)坐標(biāo)為(6,2),
∴ N1點(diǎn)坐標(biāo)為(0,4-2),即N1(0,2); ………………………………5分
M1點(diǎn)坐標(biāo)為(6-3,0),即M1(3,0). ………………………………6分
設(shè)直線M1N1的函數(shù)表達(dá)式為
,把x=3,y=0代入,解得
.
∴ 直線M1N1的函數(shù)表達(dá)式為
. ……………………………………8分
②當(dāng)M點(diǎn)在x軸的負(fù)半軸上,N點(diǎn)在y軸的負(fù)半軸上時(shí),設(shè)M2點(diǎn)坐標(biāo)為(x2,0),N2點(diǎn)坐標(biāo)為(0,y2).
∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴ N1M1∥M2N2,N1M1=M2N2.
∴ 線段M2N2與線段N1M1關(guān)于原點(diǎn)O成中心對(duì)稱.
∴ M2點(diǎn)坐標(biāo)為(-3,0),N2點(diǎn)坐標(biāo)為(0,-2). ………………………9分
設(shè)直線M2N2的函數(shù)表達(dá)式為
,把x=-3,y=0代入,解得
,
∴ 直線M2N2的函數(shù)表達(dá)式為
.
所以,直線MN的函數(shù)表達(dá)式為
或
. ………………11分
(3)選做題:(9,2),(4,5). ………………………………………………2分
13. 解:(1)分別過(guò)D,C兩點(diǎn)作DG⊥AB于點(diǎn)G,CH⊥AB于點(diǎn)H. ……………1分
∵ AB∥CD,
∴ DG=CH,DG∥CH.
∴ 四邊形DGHC為矩形,GH=CD=1.
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴ △AGD≌△BHC(HL).
∴ AG=BH=
=3. ………2分
∵ 在Rt△AGD中,AG=3,AD=5,
∴ DG=4.
∴
. ………………………………………………3分
(2)∵ MN∥AB,ME⊥AB,NF⊥AB,
∴ ME=NF,ME∥NF.
∴ 四邊形MEFN為矩形.
∵ AB∥CD,AD=BC,
∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°,
∴ △MEA≌△NFB(AAS).
∴ AE=BF. ……………………4分
設(shè)AE=x,則EF=7-2x. ……………5分
∵ ∠A=∠A,∠MEA=∠DGA=90°,
∴ △MEA∽△DGA.
∴
.
∴ ME=
.
…………………………………………………………6分
∴
. ……………………8分
當(dāng)x=
時(shí),ME=
<4,∴四邊形MEFN面積的最大值為
.……………9分
(3)能. ……………………………………………………………………10分
由(2)可知,設(shè)AE=x,則EF=7-2x,ME=
.
若四邊形MEFN為正方形,則ME=EF.
即
7-2x.解,得
. ……………………………………………11分
∴ EF=
<4.
∴ 四邊形MEFN能為正方形,其面積為
.
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com