欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.函數(shù)y=loga(x+3)-1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+2=0上,其中m>0,n>0,則$\frac{2}{m}$+$\frac{1}{n}$的最小值為$\frac{9}{2}$.

分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)先求出A的坐標(biāo),代入直線方程可得m、n的關(guān)系,再利用1的代換結(jié)合均值不等式求解即可.

解答 解::∵x=-2時(shí),y=loga1-1=-1,
∴函數(shù)y=loga(x+3)-1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)(-2,-1)即A(-2,-1),
∵點(diǎn)A在直線mx+ny+2=0上,
∴-2m-n+2=0,即2m+n=2,
∵mn>0,
∴m>0,n>0,$\frac{2}{m}$+$\frac{1}{n}$=$\frac{1}{2}$(2m+n)($\frac{2}{m}$+$\frac{1}{n}$)=$\frac{1}{2}$(5+$\frac{2n}{m}$+$\frac{2m}{n}$)≥$\frac{1}{2}$(5+4)=$\frac{9}{2}$
∴則$\frac{2}{m}$+$\frac{1}{n}$的最小值為$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì)和均值不等式等知識(shí)點(diǎn),運(yùn)用了整體代換思想,是高考考查的重點(diǎn)內(nèi)容.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)是R上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對(duì)稱,當(dāng)x∈[-1,0)時(shí),f(x)=1-($\frac{1}{2}$)x,則f(2016)+f(2017)=( 。
A.-1B.1C.2D.2006

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{{e}^{x}}$+ax,g(x)=(m-2)x2+(m-1)x+1.(其中e=2.718…)
(1)若f(x)在x=ln2處導(dǎo)數(shù)為0,求f(x)在(0,f(0))處的切線方程;
(2)當(dāng)a=e時(shí),存在x0∈(-1,0)使得f(x0)=g(x0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a,b,c∈Z)是奇函數(shù),且f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)當(dāng)x∈(0,+∞)時(shí),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知x,y為非零實(shí)數(shù),則集合M={m|m=$\frac{x}{|x|}$+$\frac{y}{|y|}$+$\frac{xy}{|xy|}$}為(  )
A.{0,3}B.{1,3}C.{-1,3}D.{1,-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)不等式|x-$\frac{1}{2}$|>$\frac{3}{2}$的解集為A,函數(shù)g(x)=$\sqrt{\frac{3}{x}-1}$的定義域?yàn)榧螧.已知α:x∈A∩B,β:x滿足2x+p≤0.且α是β的充分不必要條件,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)集合A={x|x<2},B={x|x<a},若A?B,則實(shí)數(shù)a的取值范圍是(  )
A.{a|a<2}B.{a|a≤2}C.{a|a≥2}D.{a|a>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,|$\overrightarrow{a}$+$\overrightarrow$|=5,求|$\overrightarrow{a}$-$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求值 
(1)$sin(-\frac{35π}{4})$
(2)$\frac{{cos(-{{585}°})}}{{tan{{495}°}+sin(-{{690}°})}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案