欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.如圖,BD為一直線,∠B=∠C,AE平分∠DAC,請(qǐng)說(shuō)明AE∥BC.

分析 根據(jù)三角形的外角性質(zhì)得出∠DAC=∠B+∠C,求出∠DAC=2∠B,根據(jù)角平分線定義得出∠DAC=2∠DAE,求出∠DAE=∠B,根據(jù)平行線的判定得出即可.

解答 證明:∵∠DAC是△ABC的外角,
∴∠DAC=∠B+∠C,
∵∠B=∠C,
∴∠DAC=2∠B,
∵AE平分∠DAC,
∴∠DAC=2∠DAE,
∴∠DAE=∠B,
∴AE∥BC.

點(diǎn)評(píng) 本題考查了三角形的外角性質(zhì)和平行線的判定的應(yīng)用,能求出∠DAE=∠B是解此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在Rt△AOB中,OA=3,sinB=$\frac{3}{5}$,P、M、分別是BA、BO邊上的兩個(gè)動(dòng)點(diǎn).點(diǎn)M從點(diǎn)B出發(fā),沿BO以1單位/秒的速度向點(diǎn)O運(yùn)動(dòng);點(diǎn)P從點(diǎn)B出發(fā),沿BA以a單位/秒的速度向點(diǎn)A運(yùn)動(dòng);P、M兩點(diǎn)同時(shí)出發(fā),任意一點(diǎn)先到達(dá)終點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t.
(1)線段AP的長(zhǎng)度為5-at(用含a、t的代數(shù)式表示);
(2)如圖①,連結(jié)PO、PM,若a=1,△PMO的面積為S,試求S的最大值;
(3)如圖②,連結(jié)PM、AM,試探究:在點(diǎn)P、M運(yùn)動(dòng)的過(guò)程中,是否存在某個(gè)時(shí)刻,使得△PMB為直角三角形且△PMA是等腰三角形?若存在,求出此時(shí)a和t的取值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在△ABC中,AB=AC=13厘米,BC=10厘米.AD⊥BC于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1厘米的速度在線段AD上向終點(diǎn)D運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求AD的長(zhǎng);
(2)當(dāng)△PDC的面積為15平方厘米時(shí),求t的值;
(3)動(dòng)點(diǎn)M從點(diǎn)C出發(fā)以每秒2厘米的速度在射線CB上運(yùn)動(dòng).點(diǎn)M與點(diǎn)P同時(shí)出發(fā),且當(dāng)點(diǎn)P運(yùn)動(dòng)到終點(diǎn)D時(shí),點(diǎn)M也停止運(yùn)動(dòng).是否存在t,使得PM=AP+BM?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在⊙O中,AB為直徑,PC為弦,且PA=PC,PC交AB于M,若∠APC=45°,求$\frac{AM}{BM}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.分解因式:
(1)6x(a-b)+4y(b-a)
(2)9(a+b)2-25(a-b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,△ABC是等邊三角形,AB=2,D是邊BC的中點(diǎn),點(diǎn)P從點(diǎn)A出發(fā),沿AB-BD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng).同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),沿CA-AC以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),△PQD的面積為S.
(1)求線段PB的長(zhǎng)(用含t的代數(shù)式).
(2)當(dāng)△PQD是等邊三角形時(shí),求t的值.
(3)當(dāng)S>0時(shí),求S與t的函數(shù)關(guān)系式.
(4)若點(diǎn)D關(guān)于直線PQ的對(duì)稱點(diǎn)為點(diǎn)D′,且S>0,直接寫出點(diǎn)D′落在△ABC的邊上時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F(xiàn)分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:
①四邊形CFHE是菱形;
②EC平分∠DCH;
③線段BF的取值范圍為3≤BF≤4;
④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2$\sqrt{5}$.
以上結(jié)論中,你認(rèn)為正確的有①③④.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖形似“w”的函數(shù)是由拋物線y1的一部分,其表達(dá)式為:y1=$\frac{\sqrt{3}}{3}$(x2-2x-3)(x≤3)以及拋物線y2的一部分所構(gòu)成的,其中曲線y2與曲線y1關(guān)于直線x=3對(duì)稱,A、B是曲線y1與x軸兩交點(diǎn)(A在B的左邊),C是曲線y1與y軸交點(diǎn).
(1)求A,B,C三點(diǎn)的坐標(biāo)和曲線y2的表達(dá)式;
(2)我們把其中一條對(duì)角線被另一條對(duì)角線垂直且平分的四邊形稱為箏形.過(guò)點(diǎn)C作x軸的平行線與曲線y1交于另一個(gè)點(diǎn)D,連接AD.試問(wèn):在曲線y2上是否存在一點(diǎn)M,使得四邊形ACDM為箏形?若存在,計(jì)算出點(diǎn)M的橫坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知:如圖,AB∥CD,若∠A=66°∠B=45°,則∠1=66°,∠2=45°.

查看答案和解析>>

同步練習(xí)冊(cè)答案