分析 ①先判斷出四邊形CFHE是平行四邊形,再根據(jù)翻折的性質(zhì)可得CF=FH,然后根據(jù)鄰邊相等的平行四邊形是菱形證明,判斷出①正確;
②根據(jù)菱形的對(duì)角線平分一組對(duì)角線可得∠BCH=∠ECH,然后求出只有∠DCE=30°時(shí)EC平分∠DCH,判斷出②錯(cuò)誤;
③點(diǎn)H與點(diǎn)A重合時(shí),設(shè)BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,點(diǎn)G與點(diǎn)D重合時(shí),CF=CD,求出BF=4,然后寫出BF的取值范圍,判斷出③正確;
④過點(diǎn)F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判斷出④正確.
解答 解:∵FH與CG,EH與CF都是矩形ABCD的對(duì)邊AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四邊形CFHE是平行四邊形,
由翻折的性質(zhì)得,CF=FH,
∴四邊形CFHE是菱形,(故①正確);
∴∠BCH=∠ECH,
∴只有∠DCE=30°時(shí)EC平分∠DCH,(故②錯(cuò)誤);
點(diǎn)H與點(diǎn)A重合時(shí),設(shè)BF=x,則AF=FC=8-x,
在Rt△ABF中,AB2+BF2=AF2,
即42+x2=(8-x)2,
解得x=3,
點(diǎn)G與點(diǎn)D重合時(shí),CF=CD=4,
∴BF=4,
∴線段BF的取值范圍為3≤BF≤4,(故③正確);
過點(diǎn)F作FM⊥AD于M,
則ME=(8-3)-3=2,
由勾股定理得,
EF=$\sqrt{M{F}^{2}+M{E}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,(故④正確);
綜上所述,結(jié)論正確的有①③④共3個(gè),
故答案為①③④.
點(diǎn)評(píng) 本題考查了翻折變換的性質(zhì),菱形的判定與性質(zhì),勾股定理的應(yīng)用,難點(diǎn)在于靈活運(yùn)用菱形的判定與性質(zhì)與勾股定理等其它知識(shí)有機(jī)結(jié)合.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 40° | B. | 45° | C. | 50° | D. | 55° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com