分析 (1)根據(jù)勾股定理可得AB=10,若動點M、N相遇,則有t+3t=10,即可求出t的值;
(2)由于“點P在BC上”與“點P在點AC上”及“點M在點N的左邊”與“點M在點N的右邊”對應的MN、PG的表達式不同,S與t之間的函數(shù)關系式也就不同,因此需分情況討論.只需先考慮臨界位置(點P與點C重合,點M與點N重合、點N與點A重合)所對應的t的值,然后分三種情況(①0≤t≤1.4,②1.4<t<2.5,③2.5<t≤$\frac{10}{3}$)討論,用t的代數(shù)式表示出MN和PG,就可解決問題;
(3)過點K作KD⊥AC于D,過點M作ME⊥AC于E,由于AC已知,要求△KAC的面積的最值,只需用t的代數(shù)式表示出DK,然后利用一次函數(shù)的增減性就可解決問題.
解答 解:(1)∵∠ACB=90°,AC=6,BC=8,∴AB=10,
∴t+3t=10,解得t=2.5(s),
即當t=2.5秒時,動點M,N相遇;
故答案為2.5;![]()
(2)過點C作CH⊥AB于H,
由S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$AB•CH得,CH=$\frac{AC•BC}{AB}$=4.8,
∴AH=$\sqrt{A{C}^{2}-C{H}^{2}}$=3.6,BH=10-3.6=6.4.
∵當點N運動到點A時,M,N兩點同時停止運動,∴0≤t≤$\frac{10}{3}$.
當0≤t<2.5時,點M在點N的左邊,如圖1、圖2,
MN=AB-AM-BN=10-t-3t=10-4t.![]()
∵點G是MN的中點,∴MG=$\frac{1}{2}$MN=5-2t,
∴AG=AM+MG=t+5-2t=5-t,
∴BG=10-(5-t)=t+5.
當點P與點C重合時,點G與點H重合,
則有5-t=3.6,解得t=1.4.
當2.5<t≤$\frac{10}{3}$時,點M在點N右邊,如圖3,
∵MN=AM-AN=AM-(AB-BN)=t-(10-3t)=4t-10,![]()
∴NG=$\frac{1}{2}$MN=2t-5,
∴AG=AN+NG=10-3t+2t-5=5-t.
綜上所述:①當0≤t≤1.4時,點M在點N的左邊,點P在BC上,如圖1,
此時MN=10-4t,BG=t+5,PG=BG•tanB=$\frac{6}{8}$(t+5)=$\frac{3}{4}$t+$\frac{15}{4}$,
∴S=$\frac{1}{2}$MN•PG=$\frac{1}{2}$(10-4t)•($\frac{3}{4}$t+$\frac{15}{4}$)=-$\frac{3}{2}$t2-$\frac{15}{4}$t+$\frac{75}{4}$;
②當1.4<t<2.5時,點M在點N的左邊,點P在AC上,如圖2,
此時MN=10-4t,AG=5-t,PG=AG•tanA=$\frac{8}{6}$(5-t)=$\frac{20}{3}$-$\frac{4}{3}$t,
∴S=$\frac{1}{2}$MN•PG=$\frac{1}{2}$(10-4t)•($\frac{20}{3}$-$\frac{4}{3}$t)=$\frac{8}{3}$t2-20t+$\frac{100}{3}$;
③當2.5<t≤$\frac{10}{3}$時,點M在點N的右邊,點P在AC上,如圖3,
此時MN=4t-10,AG=5-t,PG=AG•tanA=$\frac{8}{6}$(5-t)=$\frac{20}{3}$-$\frac{4}{3}$t,
∴S=$\frac{1}{2}$MN•PG=$\frac{1}{2}$(4t-10)•($\frac{20}{3}$-$\frac{4}{3}$t)=-$\frac{8}{3}$t2+20t-$\frac{100}{3}$;
∴S與t之間的函數(shù)關系式為S=$\left\{\begin{array}{l}{-\frac{3}{2}{t}^{2}-\frac{15}{4}t+\frac{75}{4},0≤t≤1.4}\\{\frac{8}{3}{t}^{2}-20t+\frac{100}{3},1.4<t<2.5}\\{-\frac{8}{3}{t}^{2}+20t-\frac{100}{3},2.5<t≤\frac{10}{3}}\end{array}$;
(3)在整個運動過程中,△KAC的面積變化,最大值為4,最小值為$\frac{42}{25}$.
提示:過點K作KD⊥AC于D,過點M作ME⊥AC于E.
①當0≤t≤1.4時,點P在BC上,如圖4,![]()
此時AM=t,BG=t+5,
∴EM=AM•sin∠EAM=$\frac{8}{10}$t=$\frac{4}{5}$t,BP=$\frac{BG}{cosB}$=$\frac{t+5}{\frac{8}{10}}$=$\frac{5}{4}$t+$\frac{25}{4}$,
∴CP=CB-BP=8-($\frac{5}{4}$t+$\frac{25}{4}$)=-$\frac{5}{4}$t+$\frac{7}{4}$.
∵EM⊥AC,KD⊥AC,PC⊥AC,
∴EM∥DK∥CP.
∵K為PM的中點,∴D為EC中點,
∴DK=$\frac{1}{2}$(CP+EM)=$\frac{1}{2}$(-$\frac{5}{4}$t+$\frac{7}{4}$+$\frac{4}{5}$t)=-$\frac{9}{40}$t+$\frac{7}{8}$,
∴S△KAC=$\frac{1}{2}$AC•DK=$\frac{1}{2}$×6×(-$\frac{9}{40}$t+$\frac{7}{8}$)=-$\frac{27}{40}$t+$\frac{21}{8}$,
∵-$\frac{27}{40}$<0,∴S△KAC隨著t的增大而減小,
∴當t=0時,S△KAC取到最大值,最大值為$\frac{21}{8}$,
當t=1.4時,S△KAC取到最小值,最小值為$\frac{42}{25}$;
②當1.4<t≤$\frac{10}{3}$時,點P在AC上,如圖5、圖6,![]()
![]()
同理可得:DK為△PEM的中位線,EM=$\frac{4}{5}$t,
∴DK=$\frac{1}{2}$EM=$\frac{2}{5}$t,
∴S△KAC=$\frac{1}{2}$AC•DK=$\frac{1}{2}$×6×$\frac{2}{5}$t=$\frac{6}{5}$t.
∵$\frac{6}{5}$>0,∴S△KAC隨著t的增大而增大,
∴當t=1.4時,S△KAC取到最小值,最小值為$\frac{42}{25}$;
當t=$\frac{10}{3}$時,S△KAC取到最大值,最大值為$\frac{6}{5}$×$\frac{10}{3}$=4
綜上所述:△KAC的面積的最大值為4,最小值為$\frac{42}{25}$.
點評 本題主要考查了平行線分線段成比例、三角函數(shù)的定義、勾股定理、梯形中位線定理、三角形中位線定理、一次函數(shù)的增減性等知識,在解決問題的過程中,用到了分類討論、等積法、臨界值法等重要的數(shù)學思想方法,找準臨界點是解決本題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | A1(-2,-1),B1(2,1),C1(1,-4) | B. | A1(-1,1),B1(3,3),C1(2,-2) | ||
| C. | A1(0,0),B1(4,2),C1(3,-3) | D. | A1(-1,2),B1(3,4),C1(2,-3) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com