分析 連接OD,作OE⊥CD于E,由垂徑定理得出CE=DE,證明△OEM是等腰直角三角形,由勾股定理得出OE=$\frac{\sqrt{2}}{2}$OM=$\frac{\sqrt{2}}{2}$,在Rt△ODE中,由勾股定理求出DE=$\frac{\sqrt{14}}{2}$,得出CD=2DE=$\sqrt{14}$即可.
解答 解:連接OD,作OE⊥CD于E,如圖所示:![]()
則CE=DE,
∵AB是⊙O的直徑,AB=4,點(diǎn)M是OA的中點(diǎn),
∴OD=OA=2,OM=1,
∵∠OME=∠CMA=45°,
∴△OEM是等腰直角三角形,
∴OE=$\frac{\sqrt{2}}{2}$OM=$\frac{\sqrt{2}}{2}$,
在Rt△ODE中,由勾股定理得:DE=$\sqrt{{2}^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{14}}{2}$,
∴CD=2DE=$\sqrt{14}$;
故答案為:$\sqrt{14}$.
點(diǎn)評(píng) 本題考查了垂徑定理、勾股定理、等腰直角三角形的判定與性質(zhì);熟練掌握垂徑定理,由勾股定理求出DE是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -5 | B. | -4 | C. | -3 | D. | -1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2~3之間 | B. | 3~4之間 | C. | 4~5之間 | D. | 5~6之間 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com