分析 (1)①根據(jù)旋轉(zhuǎn)的性質(zhì)和平行線的性質(zhì)證明;
②過A作AF⊥BC于F,過C作CE⊥AB于E,根據(jù)三角函數(shù)和三角形的面積公式解答;
(2)過C作CF⊥AB于F,以C為圓心CF為半徑畫圓交BC于F1,和以C為圓心BC為半徑畫圓交BC的延長線于F1,得出最大和最小值解答即可.
解答 解:(1)①證明:∵AB=AC,B1C=BC,
∴∠AB1C=∠B,∠B=∠ACB,
∵∠AB1C=∠ACB(旋轉(zhuǎn)角相等),
∴∠B1CA1=∠AB1C,
∴BB1∥CA1;
②過A作AF⊥BC于F,過C作CE⊥AB于E,如圖①:![]()
∵AB=AC,AF⊥BC,
∴BF=CF,
∵cos∠ABC=$\frac{3}{5}$,AB=5,
∴BF=3,
∴BC=6,
∴B1C=BC=6,
∵CE⊥AB,
∴BE=B1E=$\frac{3}{5}×6=\frac{18}{5}$,
∴BB1=$\frac{36}{5}$,CE=$\frac{4}{5}×6=\frac{24}{5}$,
∴AB1=$\frac{36}{5}-5=\frac{11}{5}$,
∴△AB1C的面積為:$\frac{1}{2}×\frac{11}{5}×\frac{24}{5}=\frac{132}{25}$;
(2)如圖2,過C作CF⊥AB于F,以C為圓心CF為半徑畫圓交BC于F1,EF1有最小值,![]()
此時(shí)在Rt△BFC中,CF=$\frac{24}{5}$,
∴CF1=$\frac{24}{5}$,
∴EF1的最小值為$\frac{24}{5}-3=\frac{9}{5}$;
如圖,以C為圓心BC為半徑畫圓交BC的延長線于F1,EF1有最大值;
此時(shí)EF1=EC+CF1=3+6=9,
∴線段EF1的最大值與最小值的差為$9-\frac{9}{5}=\frac{36}{5}$.
點(diǎn)評 此題考查幾何變換問題,關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形的面積公式進(jìn)行解答.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 音樂組 | B. | 美術(shù)組 | C. | 體育組 | D. | 科技組 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com