分析 (1)由勾股定理求得BC=10.通過“兩角法”證得△CDE∽△CAB,則對(duì)應(yīng)邊成比例DE:AB=CE:CB=CD:CA,由此可以求得DE、CE的值;
(2)如圖2,當(dāng)P點(diǎn)在AB上時(shí),由∠PDQ=90°就可以得出∠2=∠4,就可以證明△PBD∽△QED,就可以EQ的值,從而求得CQ的值;如圖2-1,當(dāng)P點(diǎn)在AB的延長(zhǎng)線上時(shí),證明△PBD∽△QED,由相似三角形的性質(zhì)就可以求出結(jié)論;
解答 解::(1)如圖1,∵∠A=90°,AB=6,AC=8,![]()
∴根據(jù)勾股定理得到,BC=$\sqrt{A{B}^{2}+A{C}^{2}}$=10
∴CD=$\frac{1}{2}$BC=5.
∵DE⊥BC.
∴∠A=∠CDE=90°∠C=∠C
∴△CDE∽△CAB
∴DE:AB=CE:CB=CD:CA,
即DE:6=CE:10=5:8
∴DE=$\frac{15}{4}$,CE=$\frac{25}{4}$;
(2)如圖2,∵△CDE∽△CAB,
∴∠B=∠DEC.
∵∠PDQ=90°
∴∠1+∠4=90°.
∵∠1+∠2=90°
∴∠2=∠4,
∴△PBD∽△QED,
∴$\frac{PB}{EQ}$=$\frac{BD}{ED}$,
∴$\frac{2}{EQ}$=$\frac{5}{\frac{15}{4}}$,
∴EQ=$\frac{3}{2}$,
∴CQ=CE-EQ=$\frac{25}{4}$-$\frac{3}{2}$=$\frac{19}{4}$.
如圖2-1,∵∠B=DEC,![]()
∴∠PBD=∠QED.
∵∠PDQ=90°
∴∠1+∠2=90°.
∵∠3+∠2=90°
∴∠1=∠3,
∴△PBD∽△QED
∴$\frac{PB}{EQ}$=$\frac{BD}{ED}$,
∴$\frac{2}{QE}$=$\frac{5}{\frac{15}{4}}$,
∴EQ=$\frac{3}{2}$,
∴CQ=$\frac{25}{4}$+$\frac{3}{2}$=$\frac{31}{4}$,
故CQ=$\frac{19}{4}$或$\frac{31}{4}$;
點(diǎn)評(píng) 本題考查了直角三角形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,分類討論思想在解實(shí)際問題的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,三角函數(shù)值的運(yùn)用,解答時(shí)運(yùn)用三角函數(shù)值求證三角形的角相等是難點(diǎn),證明三角形相似是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 所掛物體質(zhì)量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
| 彈簧長(zhǎng)度y/cm | 18 | 20 | 22 | 24 | 26 | 28 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com