欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.如圖,△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,連接AD、DE.
(1)求證:D是BC的中點(diǎn);
(2)若DE=3,BD-AD=2,求⊙O的半徑;
(3)在(2)的條件下,求弦AE的長.

分析 (1)根據(jù)圓周角定理求得AD⊥BC,根據(jù)等腰三角形三線合一的性質(zhì)即可證得結(jié)論;
(2)先求得∠E=∠C,根據(jù)等角對等邊求得BD=DC=DE=3,進(jìn)而求得AD=1,然后根據(jù)勾股定理求得AB,即可求得圓的半徑;
(3)根據(jù)題意得到AC=$\sqrt{10}$,BC=6,DC=3,然后根據(jù)割線定理即可求得EC,進(jìn)而求得AE.

解答 (1)證明:∵AB是圓O的直徑,
∴AD⊥BC,
∵AB=AC,
∴BD=DC;
(2)解:∵AB=AC,
∠B=∠C,
∵∠B=∠E,
∴∠E=∠C,
∴BD=DC=DE=3,
∵BD-AD=2,
∴AD=1,
在RT△ABD中,AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{10}$,
∴⊙O的半徑為$\frac{\sqrt{10}}{2}$;
(3)解:∵AB=AC=$\sqrt{10}$,BD=DC=3,
∴BC=6,
∵∠B=∠E,∠C=∠C,
∴△EDC∽△BAC,
∵AC•EC=DC•BC,
∴$\sqrt{10}$•EC=3×6,
∴EC=$\frac{9}{5}$$\sqrt{10}$,
∴AE=EC-AC=$\frac{9}{5}$$\sqrt{10}$-$\sqrt{10}$=$\frac{4}{5}$$\sqrt{10}$.

點(diǎn)評 本題考查了圓周角定理,等腰三角形的判定和性質(zhì),勾股定理的應(yīng)用以及割線定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖,正方形ABCD的頂點(diǎn)B、C在x軸的正半軸上,反比例函數(shù)y=$\frac{k}{x}$(k≠0)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,$\frac{2}{3}$),則k的值為2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在平面直角坐標(biāo)系中,拋物線y=-$\frac{1}{2}{x^2}+\frac{3}{2}$x+2與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,直線y=kx+$\frac{1}{2}$與拋物線相交于點(diǎn)A,D.
(1)填空:A(-1,0),B(4,0),C(0,2),k=$\frac{1}{2}$;
(2)點(diǎn)M為拋物線對稱軸l上一動(dòng)點(diǎn),當(dāng)MA+MC的值最小時(shí),求點(diǎn)M的坐標(biāo);
(3)在y軸上是否存在點(diǎn)P,使△PAD是直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個(gè)直角的頂點(diǎn)重合于對角線BD上一點(diǎn)P、EF、GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時(shí),點(diǎn)P是正方形ABCD的中心;
②當(dāng)x=$\frac{1}{2}$時(shí),EF+GH>AC;
③當(dāng)0<x<2時(shí),六邊形AEFCHG面積的最大值是3;
④當(dāng)0<x<2時(shí),六邊形AEFCHG周長的值不變.
其中正確的選項(xiàng)是( 。
A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.不等式$\frac{x}{2}$>x與ax-6>5x的解集相同,則a<5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在矩形OABC中,OA=5,AB=4,點(diǎn)D為邊AB上一點(diǎn),將△BCD沿直線CD折疊,使點(diǎn)B恰好落在邊OA上的點(diǎn)E處,分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系.
(1)求OE的長及經(jīng)過O,D,C三點(diǎn)拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從E點(diǎn)出發(fā),沿EC以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),DP=DQ;
(3)若點(diǎn)N在(1)中拋物線的對稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出M點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖,等腰直角△ABC中,AC=BC,∠ACB=90°,點(diǎn)O分斜邊AB為BO:OA=1:$\sqrt{3}$,將△BOC繞C點(diǎn)順時(shí)針方向旋轉(zhuǎn)到△AQC的位置,則∠AQC=105°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.下面的計(jì)算正確的是( 。
A.6a-5a=1B.$\sqrt{36}$=±6C.(a23=a5D.2(a+b)=2a+2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)C′),連接CC′.若∠CC′B′=32°,則∠B的大小是( 。
A.32°B.64°C.77°D.87°

查看答案和解析>>

同步練習(xí)冊答案