欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.如圖,等腰直角△ABC中,AC=BC,∠ACB=90°,點(diǎn)O分斜邊AB為BO:OA=1:$\sqrt{3}$,將△BOC繞C點(diǎn)順時(shí)針方向旋轉(zhuǎn)到△AQC的位置,則∠AQC=105°.

分析 連接OQ,由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,從而推出∠OAQ=90°,∠OCQ=90°,再根據(jù)特殊直角三角形邊的關(guān)系,分別求出∠AQO與∠OQC的值,可求出結(jié)果.

解答 解:連接OQ,
∵AC=BC,∠ACB=90°,
∴∠BAC=∠B=45°,
由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,
∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,
∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,
∴∠OQC=45°,
∵BO:OA=1:$\sqrt{3}$,
設(shè)BO=1,OA=$\sqrt{3}$,
∴AQ=1,則tan∠AQO=$\frac{AO}{AQ}$=$\sqrt{3}$,
∴∠AQO=60°,
∴∠AQC=105°.

點(diǎn)評(píng) 本題主要考查了圖形旋轉(zhuǎn)的性質(zhì),特殊角直角三角形的邊角關(guān)系,掌握?qǐng)D形旋轉(zhuǎn)的性質(zhì),熟記特殊直角三角形的邊角關(guān)系是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在菱形ABCD中,AB=10,sinA=$\frac{4}{5}$,點(diǎn)E在AB上,AE=4,過點(diǎn)E作EF∥AD,交CD于點(diǎn)F.
(1)請(qǐng)寫出菱形ABCD的面積:80;
(2)若點(diǎn)P從點(diǎn)A出發(fā)以1個(gè)單位長(zhǎng)度/秒的速度沿著線段AB向終點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)E出發(fā)也以1個(gè)單位長(zhǎng)度/秒的速度沿著線段EF向終點(diǎn)F運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
①當(dāng)t=5時(shí),求PQ的長(zhǎng);
②以P為圓心,PQ長(zhǎng)為半徑的⊙P是否能與直線AD相切?如果能,求此時(shí)t的值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以點(diǎn)C為圓心,CA為半徑的圓與AB交于點(diǎn)D,則AD的長(zhǎng)為( 。
A.$\frac{18}{5}$B.$\frac{5}{2}$C.$\frac{24}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,連接AD、DE.
(1)求證:D是BC的中點(diǎn);
(2)若DE=3,BD-AD=2,求⊙O的半徑;
(3)在(2)的條件下,求弦AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),直線AB分別與x軸、y軸交于B和A,與反比例函數(shù)的圖象交于C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=$\frac{1}{2}$,OB=4,OE=2.
(1)求直線AB和反比例函數(shù)的解析式;
(2)求△OCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,在⊙O中,直徑AB⊥CD,垂足為E,∠BOD=48°,則∠BAC的大小是( 。
A.60°B.48°C.30°D.24°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長(zhǎng)CD與AB的延長(zhǎng)線交于E,F(xiàn)在BE上,且FD=FE.
(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF=$\frac{1}{4}$,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算:cos60°-2-1+$\sqrt{(-2)^{2}}$-(π-3)0

查看答案和解析>>

同步練習(xí)冊(cè)答案