分析 (1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.
解答 (1)證明::∵D.E為AB,AC中點(diǎn)![]()
∴DE為△ABC的中位線,DE=$\frac{1}{2}$BC,
∴DE∥BC,
即EF∥BC,
∵EF=BC,
∴四邊形BCEF為平行四邊形.
(2)解:∵四邊形BCEF為平行四邊形,
又∵BE=EF,
∴四邊形BCEF是菱形,
∵∠BCF=120°,
∴∠EBC=60°,
∴△EBC是等邊三角形,
∴菱形的邊長(zhǎng)為4,高為2$\sqrt{3}$,
∴菱形的面積為4×2$\sqrt{3}$=8$\sqrt{3}$.
點(diǎn)評(píng) 本題列出平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)、三角形的中位線定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | P>Q | B. | P=Q | C. | P<Q | D. | 無(wú)法確定 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com