2、在回到③、④兩式,得:
v1 =
v2 , v =
v2
物理情形:如圖14所示,兩根長(zhǎng)度均為L(zhǎng)的剛性輕桿,一端通過(guò)質(zhì)量為m的球形鉸鏈連接,另一端分別與質(zhì)量為m和2m的小球相連。將此裝置的兩桿合攏,鉸鏈在上、豎直地放在水平桌面上,然后輕敲一下,使兩小球向兩邊滑動(dòng),但兩桿始終保持在豎直平面內(nèi)。忽略一切摩擦,試求:兩桿夾角為90°時(shí),質(zhì)量為2m的小球的速度v2 。
模型分析:三球系統(tǒng)機(jī)械能守恒、水平方向動(dòng)量守恒,并注意約束關(guān)系--兩桿不可伸長(zhǎng)。
(學(xué)生活動(dòng))初步判斷:左邊小球和球形鉸鏈的速度方向會(huì)怎樣?
設(shè)末態(tài)(桿夾角90°)左邊小球的速度為v1(方向:水平向左),球形鉸鏈的速度為v(方向:和豎直方向夾θ角斜向左),
對(duì)題設(shè)過(guò)程,三球系統(tǒng)機(jī)械能守恒,有:
mg( L-
L) =
m
+
mv2 +
2m
①
三球系統(tǒng)水平方向動(dòng)量守恒,有:
mv1 + mvsinθ= 2mv2 ②
左邊桿子不形變,有:
v1cos45°= vcos(45°-θ) ③
右邊桿子不形變,有:
vcos(45°+θ) = v2cos45° ④
四個(gè)方程,解四個(gè)未知量(v1 、v2 、v和θ),是可行的。推薦解方程的步驟如下--
1、③、④兩式用v2替代v1和v ,代入②式,解θ值,得:tgθ= 1/4
物理情形:如圖13所示,直角形的剛性桿被固定,水平和豎直部分均足夠長(zhǎng)。質(zhì)量分別為m1和m2的A、B兩個(gè)有孔小球,串在桿上,且被長(zhǎng)為L(zhǎng)的輕繩相連。忽略兩球的大小,初態(tài)時(shí),認(rèn)為它們的位置在同一高度,且繩處于拉直狀態(tài),F(xiàn)無(wú)初速地將系統(tǒng)釋放,忽略一切摩擦,試求B球運(yùn)動(dòng)L/2時(shí)的速度v2 。
模型分析:A、B系統(tǒng)機(jī)械能守恒。A、B兩球的瞬時(shí)速度不等,其關(guān)系可據(jù)“第三部分”知識(shí)介紹的定式(滑輪小船)去尋求。
(學(xué)生活動(dòng))A球的機(jī)械能是否守恒?B球的機(jī)械能是否守恒?系統(tǒng)機(jī)械能守恒的理由是什么(兩法分析:a、“微元法”判斷兩個(gè)WT的代數(shù)和為零;b、無(wú)非彈性碰撞,無(wú)摩擦,沒(méi)有其它形式能的生成)?
由“拓展條件”可以判斷,A、B系統(tǒng)機(jī)械能守恒,(設(shè)末態(tài)A球的瞬時(shí)速率為v1 )過(guò)程的方程為:
m2g
=
+
、
在末態(tài),繩與水平桿的瞬時(shí)夾角為30°,設(shè)繩子的瞬時(shí)遷移速率為v ,根據(jù)“第三部分”知識(shí)介紹的定式,有:
v1 = v/cos30°, v2 = v/sin30°
兩式合并成:v1 = v2 tg30°= v2/
②
解①、②兩式,得:v2 = ![]()
4、如圖10所示,雙手用等大反向的力F壓固定汽缸兩邊的活塞,活塞移動(dòng)相同距離S,汽缸中封閉氣體被壓縮。施力者(人)是否做功?
在以上四個(gè)事例中,S若取作用點(diǎn)位移,只有第1、2、4例是做功的(注意第3例,樓梯支持力的作用點(diǎn)并未移動(dòng),而只是在不停地交換作用點(diǎn)),S若取物體(受力者)質(zhì)心位移,只有第2、3例是做功的,而且,盡管第2例都做了功,數(shù)字并不相同。所以,用不同的判據(jù)得出的結(jié)論出現(xiàn)了本質(zhì)的分歧。
面對(duì)這些似是而非的“疑難雜癥”,我們先回到“做功是物體能量轉(zhuǎn)化的量度”這一根本點(diǎn)。
第1例,手和講臺(tái)面摩擦生了熱,內(nèi)能的生成必然是由人的生物能轉(zhuǎn)化而來(lái),人肯定做了功。S宜取作用點(diǎn)的位移;
第2例,求拉力的功,在前面已經(jīng)闡述,S取作用點(diǎn)位移為佳;
第3例,樓梯不需要輸出任何能量,不做功,S取作用點(diǎn)位移;
第4例,氣體內(nèi)能的增加必然是由人輸出的,壓力做功,S取作用點(diǎn)位移。
但是,如果分別以上四例中的受力者用動(dòng)能定理,第1例,人對(duì)講臺(tái)不做功,S取物體質(zhì)心位移;第2例,動(dòng)能增量對(duì)應(yīng)S取L/2時(shí)的值--物體質(zhì)心位移;第4例,氣體宏觀動(dòng)能無(wú)增量,S取質(zhì)心位移。(第3例的分析暫時(shí)延后。)
以上分析在援引理論知識(shí)方面都沒(méi)有錯(cuò),如何使它們統(tǒng)一?原來(lái),功的概念有廣義和狹義之分。在力學(xué)中,功的狹義概念僅指機(jī)械能轉(zhuǎn)換的量度;而在物理學(xué)中功的廣義概念指除熱傳遞外的一切能量轉(zhuǎn)換的量度。所以功也可定義為能量轉(zhuǎn)換的量度。一個(gè)系統(tǒng)總能量的變化,常以系統(tǒng)對(duì)外做功的多少來(lái)量度。能量可以是機(jī)械能、電能、熱能、化學(xué)能等各種形式,也可以多種形式的能量同時(shí)發(fā)生轉(zhuǎn)化。由此可見(jiàn),上面分析中,第一個(gè)理論對(duì)應(yīng)的廣義的功,第二個(gè)理論對(duì)應(yīng)的則是狹義的功,它們都沒(méi)有錯(cuò)誤,只是在現(xiàn)階段的教材中還沒(méi)有將它們及時(shí)地區(qū)分開(kāi)來(lái)而已。
而且,我們不難歸納:求廣義的功,S取作用點(diǎn)的位移;求狹義的功,S取物體(質(zhì)心)位移。
那么我們?cè)诮忸}中如何處理呢?這里給大家?guī)c(diǎn)建議: 1、抽象地講“某某力做的功”一般指廣義的功;2、講“力對(duì)某物體做的功”常常指狹義的功;3、動(dòng)能定理中的功肯定是指狹義的功。
當(dāng)然,求解功地問(wèn)題時(shí),還要注意具體問(wèn)題具體分析。如上面的第3例,就相對(duì)復(fù)雜一些。如果認(rèn)為所求為狹義的功,S取質(zhì)心位移,是做了功,但結(jié)論仍然是難以令人接受的。下面我們來(lái)這樣一個(gè)處理:將復(fù)雜的形變物體(人)看成這樣一個(gè)相對(duì)理想的組合:剛性物體下面連接一壓縮的彈簧(如圖11所示),人每一次蹬梯,腿伸直將軀體重心上舉,等效為彈簧將剛性物體舉起。這樣,我們就不難發(fā)現(xiàn),做功的是人的雙腿而非地面,人既是輸出能量(生物能)的機(jī)構(gòu),也是得到能量(機(jī)械能)的機(jī)構(gòu)--這里的物理情形更象是一種生物情形。本題所求的功應(yīng)理解為廣義功為宜。
以上四例有一些共同的特點(diǎn):要么,受力物體情形比較復(fù)雜(形變,不能簡(jiǎn)單地看成一個(gè)質(zhì)點(diǎn)。如第2、第3、第4例),要么,施力者和受力者之間的能量轉(zhuǎn)化不是封閉的(涉及到第三方,或機(jī)械能以外的形式。如第1例)。以后,當(dāng)遇到這樣的問(wèn)題時(shí),需要我們慎重對(duì)待。
(學(xué)生活動(dòng))思考:足夠長(zhǎng)的水平傳送帶維持勻速v運(yùn)轉(zhuǎn)。將一袋貨物無(wú)初速地放上去,在貨物達(dá)到速度v之前,與傳送帶的摩擦力大小為f ,對(duì)地的位移為S 。試問(wèn):求摩擦力的功時(shí),是否可以用W = fS ?
解:按一般的理解,這里應(yīng)指廣義的功(對(duì)應(yīng)傳送帶引擎輸出的能量),所以“位移”取作用點(diǎn)的位移。注意,在此處有一個(gè)隱含的“交換作用點(diǎn)”的問(wèn)題,仔細(xì)分析,不難發(fā)現(xiàn),每一個(gè)(相對(duì)皮帶不動(dòng)的)作用點(diǎn)的位移為2S 。(另解:求貨物動(dòng)能的增加和與皮帶摩擦生熱的總和。)
答:否。
(學(xué)生活動(dòng))思考:如圖12所示,人站在船上,通過(guò)拉一根固定在鐵樁的纜繩使船靠岸。試問(wèn):纜繩是否對(duì)船和人的系統(tǒng)做功?
解:分析同上面的“第3例”。
答:否。
3、人登靜止的樓梯,從一樓到二樓。樓梯是否做功?
2、在本“部分”第3頁(yè)圖1的模型中,求拉力做功時(shí),S是否可以取繩子質(zhì)心的位移?
在求解功的問(wèn)題時(shí),有時(shí)遇到力的作用點(diǎn)位移與受力物體的(質(zhì)心)位移不等,S是取力的作用點(diǎn)的位移,還是取物體(質(zhì)心)的位移呢?我們先看下面一些事例。
1、如圖9所示,人用雙手壓在臺(tái)面上推講臺(tái),結(jié)果雙手前進(jìn)了一段位移而講臺(tái)未移動(dòng)。試問(wèn):人是否做了功?
物理情形:如圖4所示,長(zhǎng)度為L(zhǎng)、質(zhì)量為M的船停止在靜水中(但未拋錨),船頭上有一個(gè)質(zhì)量為m的人,也是靜止的。現(xiàn)在令人在船上開(kāi)始向船尾走動(dòng),忽略水的阻力,試問(wèn):當(dāng)人走到船尾時(shí),船將會(huì)移動(dòng)多遠(yuǎn)?
(學(xué)生活動(dòng))思考:人可不可能勻速(或勻加速)走動(dòng)?當(dāng)人中途停下休息,船有速度嗎?人的全程位移大小是L嗎?本系統(tǒng)選船為參照,動(dòng)量守恒嗎?
模型分析:動(dòng)量守恒展示了已知質(zhì)量情況下的速度關(guān)系,要過(guò)渡到位移關(guān)系,需要引進(jìn)運(yùn)動(dòng)學(xué)的相關(guān)規(guī)律。根據(jù)實(shí)際情況(人必須停在船尾),人的運(yùn)動(dòng)不可能是勻速的,也不可能是勻加速的,運(yùn)動(dòng)學(xué)的規(guī)律應(yīng)選擇S =
t 。為尋求時(shí)間t ,則要抓人和船的位移約束關(guān)系。
對(duì)人、船系統(tǒng),針對(duì)“開(kāi)始走動(dòng)→中間任意時(shí)刻”過(guò)程,應(yīng)用動(dòng)量守恒(設(shè)末態(tài)人的速率為v ,船的速率為V),令指向船頭方向?yàn)檎,則矢量關(guān)系可以化為代數(shù)運(yùn)算,有:
0 = MV + m(-v)
即:mv = MV
由于過(guò)程的末態(tài)是任意選取的,此式展示了人和船在任一時(shí)刻的瞬時(shí)速度大小關(guān)系。而且不難推知,對(duì)中間的任一過(guò)程,兩者的平均速度也有這種關(guān)系。即:
m
= M
①
設(shè)全程的時(shí)間為t ,乘入①式兩邊,得:m
t = M
t
設(shè)s和S分別為人和船的全程位移大小,根據(jù)平均速度公式,得:m s = M S ②
受船長(zhǎng)L的約束,s和S具有關(guān)系:s + S = L ③
解②、③可得:船的移動(dòng)距離 S =
L
(應(yīng)用動(dòng)量守恒解題時(shí),也可以全部都用矢量關(guān)系,但這時(shí)“位移關(guān)系”表達(dá)起來(lái)難度大一些--必須用到運(yùn)動(dòng)合成與分解的定式。時(shí)間允許的話,可以做一個(gè)對(duì)比介紹。)
另解:質(zhì)心運(yùn)動(dòng)定律
人、船系統(tǒng)水平方向沒(méi)有外力,故系統(tǒng)質(zhì)心無(wú)加速度→系統(tǒng)質(zhì)心無(wú)位移。先求出初態(tài)系統(tǒng)質(zhì)心(用它到船的質(zhì)心的水平距離x表達(dá)。根據(jù)力矩平衡知識(shí),得:x =
),又根據(jù),末態(tài)的質(zhì)量分布與初態(tài)比較,相對(duì)整體質(zhì)心是左右對(duì)稱的。弄清了這一點(diǎn)后,求解船的質(zhì)心位移易如反掌。
(學(xué)生活動(dòng))思考:如圖5所示,在無(wú)風(fēng)的天空,人抓住氣球下面的繩索,和氣球恰能靜止平衡,人和氣球地質(zhì)量分別為m和M ,此時(shí)人離地面高h(yuǎn) ,F(xiàn)在人欲沿懸索下降到地面,試問(wèn):要人充分安全地著地,繩索至少要多長(zhǎng)?
解:和模型幾乎完全相同,此處的繩長(zhǎng)對(duì)應(yīng)模型中的“船的長(zhǎng)度”(“充分安全著地”的含義是不允許人脫離繩索跳躍著地)。
答:
h 。
(學(xué)生活動(dòng))思考:如圖6所示,
兩個(gè)傾角相同的斜面,互相倒扣著放在光滑的水平地面上,小斜面在大斜面的頂端。將它們無(wú)初速釋放后,小斜面下滑,大斜面后退。已知大、小斜面的質(zhì)量分別為M和m ,底邊長(zhǎng)分別為a和b ,試求:小斜面滑到底端時(shí),大斜面后退的距離。
解:水平方向動(dòng)量守恒。解題過(guò)程從略。
答:
(a-b)。
進(jìn)階應(yīng)用:如圖7所示,一個(gè)質(zhì)量為M ,半徑為R的光滑均質(zhì)半球,靜置于光滑水平桌面上,在球頂有一個(gè)質(zhì)量為m的質(zhì)點(diǎn),由靜止開(kāi)始沿球面下滑。試求:質(zhì)點(diǎn)離開(kāi)球面以前的軌跡。
解說(shuō):質(zhì)點(diǎn)下滑,半球后退,這個(gè)物理情形和上面的雙斜面問(wèn)題十分相似,仔細(xì)分析,由于同樣滿足水平方向動(dòng)量守恒,故我們介紹的“定式”是適用的。定式解決了水平位移(位置)的問(wèn)題,豎直坐標(biāo)則需要從數(shù)學(xué)的角度想一些辦法。
為尋求軌跡方程,我們需要建立一個(gè)坐標(biāo):以半球球心O為原點(diǎn),沿質(zhì)點(diǎn)滑下一側(cè)的水平軸為x坐標(biāo)、豎直軸為y坐標(biāo)。
由于質(zhì)點(diǎn)相對(duì)半球總是做圓周運(yùn)動(dòng)的(離開(kāi)球面前),有必要引入相對(duì)運(yùn)動(dòng)中半球球心O′的方位角θ來(lái)表達(dá)質(zhì)點(diǎn)的瞬時(shí)位置,如圖8所示。
由“定式”,易得:
x =
Rsinθ
①
而由圖知:y = Rcosθ ②
不難看出,①、②兩式實(shí)際上已經(jīng)是一個(gè)軌跡的參數(shù)方程。為了明確軌跡的性質(zhì),我們可以將參數(shù)θ消掉,使它們成為:
+
=
1
這樣,特征就明顯了:質(zhì)點(diǎn)的軌跡是一個(gè)長(zhǎng)、短半軸分別為R和
R的橢圓。
物理情形:在光滑的水平地面上,有一輛車,車內(nèi)有一個(gè)人和N個(gè)鉛球,系統(tǒng)原來(lái)處于靜止?fàn)顟B(tài)。現(xiàn)車內(nèi)的人以一定的水平速度將鉛球一個(gè)一個(gè)地向車外拋出,車子和人將獲得反沖速度。第一過(guò)程,保持每次相對(duì)地面拋球速率均為v ,直到將球拋完;第二過(guò)程,保持每次相對(duì)車子拋球速率均為v ,直到將球拋完。試問(wèn):哪一過(guò)程使車子獲得的速度更大?
模型分析:動(dòng)量守恒定律必須選取研究對(duì)象之外的第三方(或第四、第五方)為參照物,這意味著,本問(wèn)題不能選車子為參照。一般選地面為參照系,這樣對(duì)“第二過(guò)程”的鉛球動(dòng)量表達(dá),就形成了難點(diǎn),必須引進(jìn)相對(duì)速度與絕對(duì)速度的關(guān)系。至于“第一過(guò)程”,比較簡(jiǎn)單:N次拋球和將N個(gè)球一次性拋出是完全等效的。
設(shè)車和人的質(zhì)量為M ,每個(gè)鉛球的質(zhì)量為m 。由于矢量的方向落在一條直線上,可以假定一個(gè)正方向后,將矢量運(yùn)算化為代數(shù)運(yùn)算。設(shè)車速方向?yàn)檎,且第一過(guò)程獲得的速度大小為V1 第二過(guò)程獲得的速度大小為V2 。
第一過(guò)程,由于鉛球每次的動(dòng)量都相同,可將多次拋球看成一次拋出。車子、人和N個(gè)球動(dòng)量守恒。
0 = Nm(-v) + MV1
得:V1 =
v
、
第二過(guò)程,必須逐次考查鉛球與車子(人)的作用。
第一個(gè)球與(N–1)個(gè)球、人、車系統(tǒng)作用,完畢后,設(shè)“系統(tǒng)”速度為u1 。值得注意的是,根據(jù)運(yùn)動(dòng)合成法則
,鉛球?qū)Φ氐乃俣炔⒉皇?-v),而是(-v + u1)。它們動(dòng)量守恒方程為:
0 = m(-v + u1) +(M +(N-1)m)u1
得:u1 =![]()
第二個(gè)球與(N -2)個(gè)球、人、車系統(tǒng)作用,完畢后,設(shè)“系統(tǒng)”速度為u2 。它們動(dòng)量守恒方程為:
(M+(N-1)m)u1 = m(-v + u2) +(M+(N-2)m)u2
得:u2 =
+ ![]()
第三個(gè)球與(N -2)個(gè)球、人、車系統(tǒng)作用,完畢后,設(shè)“系統(tǒng)”速度為u3 。鉛球?qū)Φ氐乃俣仁?-v + u3)。它們動(dòng)量守恒方程為:
(M+(N-2)m)u2 = m(-v + u3) +(M+(N-3)m)u3
得:u3 =
+
+ ![]()
以此類推(過(guò)程注意:先找uN和uN-1關(guān)系,再看uN和v的關(guān)系,不要急于化簡(jiǎn)通分)……,uN的通式已經(jīng)可以找出:
V2 = uN =
+
+
+ … + ![]()
即:V2 =
、
我們?cè)賹ⅱ偈礁膶懗桑?/p>
V1 =
、佟
不難發(fā)現(xiàn),①′式和②式都有N項(xiàng),每項(xiàng)的分子都相同,但①′式中每項(xiàng)的分母都比②式中的分母小,所以有:V1 > V2 。
結(jié)論:第一過(guò)程使車子獲得的速度較大。
(學(xué)生活動(dòng))思考:質(zhì)量為M的車上,有n個(gè)質(zhì)量均為m的人,它們靜止在光滑的水平地面上,F(xiàn)在車上的人以相對(duì)車大小恒為v、方向水平向后的初速往車下跳。第一過(guò)程,N個(gè)人同時(shí)跳下;第二過(guò)程,N個(gè)人依次跳下。試問(wèn):哪一次車子獲得的速度較大?
解:第二過(guò)程結(jié)論和上面的模型完全相同,第一過(guò)程結(jié)論為V1 =
。
答:第二過(guò)程獲得速度大。
3、最后對(duì)㈠㈡㈢式消I1 、I2 ,解v1就方便多了。結(jié)果為:
v1 = ![]()
(學(xué)生活動(dòng):訓(xùn)練解方程的條理和耐心)思考:v2的方位角β等于多少?
解:解“二級(jí)式”的⑴⑵⑶即可。⑴代入⑵消I1 ,得I2的表達(dá)式,將I2的表達(dá)式代入⑶就行了。
答:β= arc tg(
)。
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com