1.在實(shí)驗(yàn)室中,通常將金屬鈉保存在
A.水中 B. 煤油中 C. 四氯化碳中 D.汽油中
102.(08廣東佛山25題)25.我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
(1) 如圖1,在圓O所在平面上,放置一條直線
(
和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些(直接寫(xiě)出兩個(gè)即可)?
(2) 如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線
和
(
與圓O分別交于點(diǎn)A、B,
與圓O分別交于點(diǎn)C、D).
請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之.
(3) 如圖3,其中AB是圓O的直徑,AC是弦,D是![]()
的中點(diǎn),弦DE⊥AB于點(diǎn)F.
請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.
(08廣東佛山25題解答)解:(1) 弦(圖中線段AB)、弧(圖中的ACB弧)、弓形、求弓形的面積(因?yàn)槭欠忾]圖形)等. (寫(xiě)對(duì)一個(gè)給1分,寫(xiě)對(duì)兩個(gè)給2分)
(2) 情形1 如圖21,AB為弦,CD為垂直于弦AB的直徑. …………………………3分
結(jié)論:(垂徑定理的結(jié)論之一). …………………………………………………………4分
證明:略(對(duì)照課本的證明過(guò)程給分). …………………………………………………7分
情形2 如圖22,AB為弦,CD為弦,且AB與CD在圓內(nèi)相交于點(diǎn)P.
結(jié)論:
.
證明:略.
情形3 (圖略)AB為弦,CD為弦,且
與
在圓外相交于點(diǎn)P.
結(jié)論:
.
證明:略.
![]()
情形4 如圖23,AB為弦,CD為弦,且AB∥CD.
結(jié)論: = .
證明:略.
(上面四種情形中做一個(gè)即可,圖1分,結(jié)論1分,證明3分;
其它正確的情形參照給分;若提出的是錯(cuò)誤的結(jié)論,則需證明結(jié)論是錯(cuò)誤的)
(3) 若點(diǎn)C和點(diǎn)E重合,
則由圓的對(duì)稱性,知點(diǎn)C和點(diǎn)D關(guān)于直徑AB對(duì)稱. …………………………………8分
設(shè)
,則
,
.………………………………9分
又D是 的中點(diǎn),所以
,
即
.………………………………………………………10分
解得
.……………………………………………………………11分
(若求得
或
等也可,評(píng)分可參照上面的標(biāo)準(zhǔn);也可以先直覺(jué)猜測(cè)點(diǎn)B、C是圓的十二等分點(diǎn),然后說(shuō)明)
101.(08山東聊城25題)25.(本題滿分12分)如圖,把一張長(zhǎng)10cm,寬8cm的矩形硬紙板的四周各剪去一個(gè)同樣大小的正方形,再折合成一個(gè)無(wú)蓋的長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).
(1)要使長(zhǎng)方體盒子的底面積為48cm2,那么剪去的正方形的邊長(zhǎng)為多少?
(2)你感到折合而成的長(zhǎng)方體盒子的側(cè)面積會(huì)不會(huì)有更大的情況?如果有,請(qǐng)你求出最大值和此時(shí)剪去的正方形的邊長(zhǎng);如果沒(méi)有,請(qǐng)你說(shuō)明理由;
(3)如果把矩形硬紙板的四周分別剪去2個(gè)同樣大小的正方形和2個(gè)同樣形狀、同樣大小的矩形,然后折合成一個(gè)有蓋的長(zhǎng)方體盒子,是否有側(cè)面積最大的情況;如果有,請(qǐng)你求出最大值和此時(shí)剪去的正方形的邊長(zhǎng);如果沒(méi)有,請(qǐng)你說(shuō)明理由.
(08山東聊城25題解答)(本題滿分12分)
解:(1)設(shè)正方形的邊長(zhǎng)為
cm,則
.························································································ 1分
即
.
解得
(不合題意,舍去),
.
剪去的正方形的邊長(zhǎng)為1cm.·············································································· 3分
(注:通過(guò)觀察、驗(yàn)證直接寫(xiě)出正確結(jié)果給3分)
(2)有側(cè)面積最大的情況.
設(shè)正方形的邊長(zhǎng)為
cm,盒子的側(cè)面積為
cm2,
則
與
的函數(shù)關(guān)系式為:
.
即
.······························································································· 5分
改寫(xiě)為
.
當(dāng)
時(shí),
.
即當(dāng)剪去的正方形的邊長(zhǎng)為2.25cm時(shí),長(zhǎng)方體盒子的側(cè)面積最大為40.5cm2.········ 7分
(3)有側(cè)面積最大的情況.
設(shè)正方形的邊長(zhǎng)為
cm,盒子的側(cè)面積為
cm2.
若按圖1所示的方法剪折,則
與
的函數(shù)關(guān)系式為:
.
即
.
當(dāng)
時(shí),
.····························· 9分
若按圖2所示的方法剪折,則
與
的函數(shù)關(guān)系式為:
.
即
.
當(dāng)
時(shí),
.················································································· 11分
比較以上兩種剪折方法可以看出,按圖2所示的方法剪折得到的盒子側(cè)面積最大,即當(dāng)剪去的正方形的邊長(zhǎng)為
cm時(shí),折成的有蓋長(zhǎng)方體盒子的側(cè)面積最大,最大面積為
cm2.
說(shuō)明:解答題各小題只給了一種解答及評(píng)分說(shuō)明,其他解法只要步驟合理,解答正確,均應(yīng)給出相應(yīng)分?jǐn)?shù).
100.(08廣東梅州23題)
23.本題滿分11分.
如圖11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為
軸,過(guò)D且垂直于AB的直線為
軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、D、C三點(diǎn)的拋物線的解析式及其對(duì)稱軸L.
(3)若P是拋物線的對(duì)稱軸L上的點(diǎn),那么使
PDB為等腰三角形的點(diǎn)P有幾個(gè)?(不必求點(diǎn)P的坐標(biāo),只需說(shuō)明理由)
(08廣東梅州23題解答)解: (1)
DC∥AB,AD=DC=CB,
∠CDB=∠CBD=∠DBA,··············································································· 0.5分
∠DAB=∠CBA,
∠DAB=2∠DBA, ············ 1分
∠DAB+∠DBA=90
,
∠DAB=60
, ·········· 1.5分
∠DBA=30
,
AB=4,
DC=AD=2,
········· 2分
Rt
AOD,OA=1,OD=
,··························· 2.5分
A(-1,0),D(0,
),C(2,
). · 4分
(2)根據(jù)拋物線和等腰梯形的對(duì)稱性知,滿足條件的拋物線必過(guò)點(diǎn)A(-1,0),B(3,0),
故可設(shè)所求為
=
(
+1)(
-3) ······························································ 6分
將點(diǎn)D(0,
)的坐標(biāo)代入上式得,
=
.
所求拋物線的解析式為
=
·········································· 7分
其對(duì)稱軸L為直線
=1.······················································································ 8分
(3)
PDB為等腰三角形,有以下三種情況:
①因直線L與DB不平行,DB的垂直平分線與L僅有一個(gè)交點(diǎn)P1,P1D=P1B,
P1DB為等腰三角形; ················································································· 9分
②因?yàn)橐?i
style='mso-bidi-font-style:normal'>D為圓心,DB為半徑的圓與直線L有兩個(gè)交點(diǎn)P2、P3,DB=DP2,DB=DP3,
P2DB,
P3DB為等腰三角形;
③與②同理,L上也有兩個(gè)點(diǎn)P4、P5,使得 BD=BP4,BD=BP5. ···················· 10分
由于以上各點(diǎn)互不重合,所以在直線L上,使
PDB為等腰三角形的點(diǎn)P有5個(gè).
99.(08福建南平26題)26.(14分)
(1)如圖1,圖2,圖3,在
中,分別以
為邊,向
外作正三角形,正四邊形,正五邊形,
相交于點(diǎn)
.
![]()
①如圖1,求證:
;
②探究:如圖1,
;
如圖2,
;
如圖3,
.
(2)如圖4,已知:
是以
為邊向
外所作正
邊形的一組鄰邊;
是以
為邊向
外所作正
邊形的一組鄰邊.
的延長(zhǎng)相交于點(diǎn)
.
①猜想:如圖4,
(用含
的式子表示);
②根據(jù)圖4證明你的猜想.
(08福建南平26題解答)(1)①證法一:
與
均為等邊三角形,
,
························································································ 2分
且
··············································· 3分
,
即
························································ 4分
.··················································· 5分
證法二:
與
均為等邊三角形,
,
························································································ 2分
且
························································································ 3分
可由
繞著點(diǎn)
按順時(shí)針?lè)较蛐D(zhuǎn)
得到··································· 4分
.··························································································· 5分
②
,
,
.········································································ 8分(每空1分)
(2)①
········································································································ 10分
②證法一:依題意,知
和
都是正
邊形的內(nèi)角,
,
,
![]()
,即
.····························· 11分
.·························································································· 12分
,
,
······ 13分
,![]()
········································ 14分
證法二:同上可證
.··························································· 12分
,如圖,延長(zhǎng)
交
于
,
![]()
,
································ 13分
················· 14分
證法三:同上可證
.··························································· 12分
.![]()
![]()
,![]()
························································ 13分
即
········································································ 14分
證法四:同上可證
.··························································· 12分
![]()
.如圖,連接
,![]()
![]()
.···································· 13分
即
······························· 14分
注意:此題還有其它證法,可相應(yīng)評(píng)分.
98.(08四川資陽(yáng)24題)24.(本小題滿分12分)
如圖10,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過(guò)A、B、C三點(diǎn)作拋物線.
(1)求拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連結(jié)BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(08四川資陽(yáng)24題解答)(1) ∵以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC= ∠COB=90°,
∴ΔAOC∽ ΔCOB,························································································ 1分
∴
.
又∵A(–1,0),B(9,0),
∴
,解得OC=3(負(fù)值舍去).
∴C(0,–3),
······················································································································ 3分
設(shè)拋物線解析式為y=a(x+1)(x–9),
∴–3=a(0+1)(0–9),解得a=
,
∴二次函數(shù)的解析式為y=
(x+1)(x–9),即y=
x2–
x–3.···························· 4分
(2) ∵AB為O′的直徑,且A(–1,0),B(9,0),
∴OO′=4,O′(4,0),····················································································· 5分
∵點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,
∴∠BCD=
∠BCE=
×90°=45°,
連結(jié)O′D交BC于點(diǎn)M,則∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=
AB=5.
∴D(4,–5).································································································· 6分
∴設(shè)直線BD的解析式為y=kx+b(k≠0)
∴
··························································· 7分
解得![]()
∴直線BD的解析式為y=x–9.····································· 8分
(3) 假設(shè)在拋物線上存在點(diǎn)P,使得∠PDB=∠CBD,
解法一:設(shè)射線DP交⊙O′于點(diǎn)Q,則
.
分兩種情況(如答案圖1所示):
①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).
∴把點(diǎn)C、D繞點(diǎn)O′逆時(shí)針旋轉(zhuǎn)90°,使點(diǎn)D與點(diǎn)B重合,則點(diǎn)C與點(diǎn)Q1重合,
因此,點(diǎn)Q1(7,–4)符合
,
∵D(4,–5),Q1(7,–4),
∴用待定系數(shù)法可求出直線DQ1解析式為y=
x–
.··································· 9分
解方程組
得![]()
![]()
∴點(diǎn)P1坐標(biāo)為(
,
),[坐標(biāo)為(
,
)不符合題意,舍去].
······················································································································ 10分
②∵Q1(7,–4),
∴點(diǎn)Q1關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為Q2(7,4)也符合
.
∵D(4,–5),Q2(7,4).
∴用待定系數(shù)法可求出直線DQ2解析式為y=3x–17.······································ 11分
解方程組
得![]()
![]()
∴點(diǎn)P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].
······················································································································ 12分
∴符合條件的點(diǎn)P有兩個(gè):P1(
,
),P2(14,25).
解法二:分兩種情況(如答案圖2所示):
①當(dāng)DP1∥CB時(shí),能使∠PDB=∠CBD.
∵B(9,0),C(0,–3).
∴用待定系數(shù)法可求出直線BC解析式為y=
x–3.
又∵DP1∥CB,∴設(shè)直線DP1的解析式為y=
x+n.
把D(4,–5)代入可求n=
–
,
∴直線DP1解析式為y=
x–
.························· 9分
解方程組
得![]()
![]()
∴點(diǎn)P1坐標(biāo)為(
,
),[坐標(biāo)為(
,
)不符合題意,舍去].
······················································································································ 10分
②在線段O′B上取一點(diǎn)N,使BN=DM時(shí),得ΔNBD≌ΔMDB(SAS),∴∠NDB=∠CBD.
由①知,直線BC解析式為y=
x–3.
取x=4,得y= –
,∴M(4,–
),∴O′N=O′M=
,∴N(
,0),
又∵D(4,–5),
∴直線DN解析式為y=3x–17.······································································ 11分
解方程組
得![]()
![]()
∴點(diǎn)P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].
······················································································································ 12分
∴符合條件的點(diǎn)P有兩個(gè):P1(
,
),P2(14,25).
解法三:分兩種情況(如答案圖3所示):
①求點(diǎn)P1坐標(biāo)同解法二.··············································································· 10分
②過(guò)C點(diǎn)作BD的平行線,交圓O′于G,
此時(shí),∠GDB=∠GCB=∠CBD.
由(2)題知直線BD的解析式為y=x–9,
又∵ C(0,–3)
∴可求得CG的解析式為y=x–3,
設(shè)G(m,m–3),作GH⊥x軸交與x軸與H,
連結(jié)O′G,在Rt△O′GH中,利用勾股定理可得,m=7,
由D(4,–5)與G(7,4)可得,
DG的解析式為
,··········································································· 11分
解方程組
得![]()
![]()
∴點(diǎn)P2坐標(biāo)為(14,25),[坐標(biāo)為(3,–8)不符合題意,舍去].························ 12分
∴符合條件的點(diǎn)P有兩個(gè):P1(
,
),P2(14,25).
說(shuō)明:本題解法較多,如有不同的正確解法,請(qǐng)按此步驟給分.
97.(08新疆自治區(qū)24題)(10分)某工廠要趕制一批抗震救災(zāi)用的大型活動(dòng)板房.如圖,板房一面的形狀是由矩形和拋物線的一部分組成,矩形長(zhǎng)為12m,拋物線拱高為5.6m.
(1)在如圖所示的平面直角坐標(biāo)系中,求拋物線的表達(dá)式.
(2)現(xiàn)需在拋物線AOB的區(qū)域內(nèi)安裝幾扇窗戶,窗戶的底邊在AB上,每扇窗戶寬1.5m,高1.6m,相鄰窗戶之間的間距均為0.8m,左右兩邊窗戶的窗角所在的點(diǎn)到拋物線的水平距離至少為0.8m.請(qǐng)計(jì)算最多可安裝幾扇這樣的窗戶?
![]()
(08新疆自治區(qū)24題解析)24.(10分)解:(1)設(shè)拋物線的表達(dá)式為
1分
點(diǎn)
在拋物線的圖象上.
∴![]()
······························································ 3分
∴拋物線的表達(dá)式為
············································································· 4分
(2)設(shè)窗戶上邊所在直線交拋物線于C、D兩點(diǎn),D點(diǎn)坐標(biāo)為(k,t)
已知窗戶高1.6m,∴
··························································· 5分
![]()
(舍去)············································································ 6分
∴
(m)·············································································· 7分
又設(shè)最多可安裝n扇窗戶
∴
····················································································· 9分
.
答:最多可安裝4扇窗戶.···················································································· 10分
(本題不要求學(xué)生畫(huà)出4個(gè)表示窗戶的小矩形
96.(08四川自貢26題)拋物線
的頂點(diǎn)為M,與
軸的交點(diǎn)為A、B(點(diǎn)B在點(diǎn)A的右側(cè)),△ABM的三個(gè)內(nèi)角∠M、∠A、∠B所對(duì)的邊分別為m、a、b。若關(guān)于
的一元二次方程
有兩個(gè)相等的實(shí)數(shù)根。
(1)判斷△ABM的形狀,并說(shuō)明理由。
(2)當(dāng)頂點(diǎn)M的坐標(biāo)為(-2,-1)時(shí),求拋物線的解析式,并畫(huà)出該拋物線的大致圖形。
(3)若平行于
軸的直線與拋物線交于C、D兩點(diǎn),以CD為直徑的圓恰好與
軸相切,求該圓的圓心坐標(biāo)。
(08四川自貢26題解析)解:(1)令![]()
得![]()
由勾股定理的逆定理和拋物線的對(duì)稱性知
△ABM是一個(gè)以
、
為直角邊的等腰直角三角形
(2)設(shè)![]()
∵△ABM是等腰直角三角形
∴斜邊上的中線等于斜邊的一半
又頂點(diǎn)M(-2,-1)
∴
,即AB=2
∴A(-3,0),B(-1,0)
將B(-1,0) 代入
中得![]()
∴拋物線的解析式為
,即![]()
圖略
(3)設(shè)平行于
軸的直線為![]()
解方程組錯(cuò)誤!不能通過(guò)編輯域代碼創(chuàng)建對(duì)象。
得
,
(![]()
∴線段CD的長(zhǎng)為![]()
∵以CD為直徑的圓與
軸相切
據(jù)題意得![]()
∴![]()
解得 ![]()
∴圓心坐標(biāo)為
和![]()
95.
(08四川巴中30題)(12分)30.已知:如圖14,拋物線
與
軸交于點(diǎn)
,點(diǎn)
,與直線
相交于點(diǎn)
,點(diǎn)
,直線
與
軸交于點(diǎn)
.
(1)寫(xiě)出直線
的解析式.
(2)求
的面積.
(3)若點(diǎn)
在線段
上以每秒1個(gè)單位長(zhǎng)度的速度從
向
運(yùn)動(dòng)(不與
重合),同時(shí),點(diǎn)
在射線
上以每秒2個(gè)單位長(zhǎng)度的速度從
向
運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為
秒,請(qǐng)寫(xiě)出
的面積
與
的函數(shù)關(guān)系式,并求出點(diǎn)
運(yùn)動(dòng)多少時(shí)間時(shí),
的面積最大,最大面積是多少?
(08四川巴中30題解析)解:(1)在
中,令![]()
![]()
,![]()
,
··············································· 1分
又
點(diǎn)
在
上
![]()
![]()
的解析式為
·············································································· 2分
(2)由
,得
···················································· 4分
,![]()
,
······························································································· 5分
························································································· 6分
(3)過(guò)點(diǎn)
作
于點(diǎn)![]()
![]()
![]()
······························································································· 7分
·········································································································· 8分
由直線
可得:![]()
在
中,
,
,則![]()
,
······················································································· 9分
![]()
···················································································· 10分
····························································································· 11分
此拋物線開(kāi)口向下,
當(dāng)
時(shí),![]()
當(dāng)點(diǎn)
運(yùn)動(dòng)2秒時(shí),
的面積達(dá)到最大,最大為
.···························· 12分
94.(08山東濟(jì)寧26題)(12分)
![]()
中,
,
,
cm.長(zhǎng)為1cm的線段
在
的邊
上沿
方向以1cm/s的速度向點(diǎn)
運(yùn)動(dòng)(運(yùn)動(dòng)前點(diǎn)
與點(diǎn)
重合).過(guò)
分別作
的垂線交直角邊于
兩點(diǎn),線段
運(yùn)動(dòng)的時(shí)間為
s.
(1)若
的面積為
,寫(xiě)出
與
的函數(shù)關(guān)系式(寫(xiě)出自變量
的取值范圍);
(2)線段
運(yùn)動(dòng)過(guò)程中,四邊形
有可能成為矩形嗎?若有可能,求出此時(shí)
的值;若不可能,說(shuō)明理由;
(3)
為何值時(shí),以
為頂點(diǎn)的三角形與
相似?
(08山東濟(jì)寧26題解析)解:(1)當(dāng)點(diǎn)
在
上時(shí),
,
.
.········································································ 2分
當(dāng)點(diǎn)
在
上時(shí),
.
.·················································· 4分
(2)
,
.
.
.········································································ 6分
由條件知,若四邊形
為矩形,需
,即
,
.
當(dāng)
s時(shí),四邊形
為矩形.································································· 8分
(3)由(2)知,當(dāng)
s時(shí),四邊形
為矩形,此時(shí)
,
.··························································································· 9分
除此之外,當(dāng)
時(shí),
,此時(shí)
.
,
.
.····························· 10分
,
.
又
,
.········································ 11分
,
.
當(dāng)
s或
s時(shí),以
為頂點(diǎn)的三角形與
相似.··················· 12分
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com