即
,解得
.(14分)
說明:二元不等式求最值這是考試大綱的要求,不等式恒成立變形轉(zhuǎn)化為函數(shù)值之間的關(guān)系,變形換元化歸基本的初等函數(shù)的復(fù)合函數(shù),構(gòu)造函數(shù)的單調(diào)性解決,這是函數(shù)的一個重要應(yīng)用,考查了正比例和反比例函數(shù)的性質(zhì),最后一問的恒成立問題換元后,分離參數(shù)化歸對號函數(shù)單調(diào)性解決值域,再構(gòu)建不等式解參數(shù)范圍,這是高考命題的熱點。
要使函數(shù)
在
上恒有
,必有
,
因此
,∴函數(shù)
在
上遞減,在
上遞增,
由(II)知,要使
對任意
恒成立,必有
,
即求使
對
恒成立的
的范圍.(10分)
(III)令![]()
,則
,
即當(dāng)
時不等式
成立. (9分)
所以![]()
![]()
.
由
,又
,
,∴在
上是增函數(shù),
. (5分)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com