分析 由題意可判斷x≥15,x∈N*;從而檢驗(yàn)即可.
解答 解:∵x2-14x-9=(x-7)2-58,
又∵f(x)表示正整數(shù)x各位數(shù)字之和,
∴(x-7)2-58>0,x∈N*,
∴x≥15,x∈N*;
若x=15,f(x)=6,(x-7)2-58=6,成立;
若x=16,則f(x)=7,(x-7)2-58=23,不成立;
可知y=(x-7)2-58的增長(zhǎng)速度越來越快,
而f(x)的增長(zhǎng)速度很小,
故不再有解;
故方程f(x)=x2-14x-9的解為x=15.
點(diǎn)評(píng) 本題考查了學(xué)生對(duì)新定義的接受與轉(zhuǎn)化能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | f($\frac{3}{4}$)>f(a2-a+1) | B. | f($\frac{3}{4}$)≥f(a2-a+1) | C. | f($\frac{3}{4}$)<f(a2-a+1) | D. | f($\frac{3}{4}$)≤f(a2-a+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\root{4}{{m}^{2}}$ | B. | $\root{5}{m}$ | C. | $\root{6}{m}$ | D. | $\root{5}{-m}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com