分析 直接利用后利用平面向量的數(shù)量積進行運算.
解答 解:如圖,![]()
可得$\overrightarrow{AC′}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC′}$=$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA′}$,
故$|\overrightarrow{AC′}{|}^{2}=(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA′})^{2}$=$|\overrightarrow{AB}{|}^{2}+|\overrightarrow{AD}{|}^{2}+|\overrightarrow{AA′}{|}^{2}$$+2(\overrightarrow{AB}•\overrightarrow{AD}+\overrightarrow{AB}•\overrightarrow{AA′}+\overrightarrow{AD}•\overrightarrow{AA′})$
=22+12+32+2(2×1×0+2×3×$\frac{1}{2}$+1×3×$\frac{1}{2}$)=23.
∴AC′=$\sqrt{23}$.
故答案為:$\sqrt{23}$.
點評 本題考查了利用平面向量求解立體幾何問題,考查了平面向量的數(shù)量積運算,是基礎(chǔ)的計算題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{5}$ | B. | $4\sqrt{5}$ | C. | $3\sqrt{5}$ | D. | $2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | D1O∥平面A1BC1 | B. | D1O⊥平面AMC | ||
| C. | 異面直線BC1與AC所成的角等于60° | D. | 二面角M-AC-B等于45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2$\sqrt{3}$ | B. | 4 | C. | 3$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a,x3,x6 | B. | x2 | C. | x3,x6 | D. | x4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com