欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.(Ⅰ)若x<0,求函數(shù)$f(x)=4x+\frac{3}{x}$的最大值及相應x的值;
(Ⅱ)已知x,y為正數(shù),$\frac{1}{x}+\frac{3}{y}=1$,且3x+y≥m2+4m恒成立,求m的取值范圍.

分析 (Ⅰ)若x<0,利用基本不等式求函數(shù)$f(x)=4x+\frac{3}{x}$的最大值及相應x的值;
(Ⅱ)要使m2+4m≤3x+y恒成立,只需m2+4m≤(3x+y)min,利用$\frac{1}{x}+\frac{3}{y}=1$結合基本不等式,求m的取值范圍.

解答 解:(Ⅰ)∵x<0,∴-x>0,$-\frac{3}{x}>0$…(1分)
∴$f(x)=4x+\frac{3}{x}=-[(-4x)+(-\frac{3}{x})]≤-2\sqrt{(-4x)•(-\frac{3}{x})}=-4\sqrt{3}$…(4分)
當且僅當$-4x=-\frac{3}{x}$即$x=-\frac{{\sqrt{3}}}{2}$時取等號; …(5分)
∴$f{(x)_{max}}=f(-\frac{{\sqrt{3}}}{2})=-4\sqrt{3}$…(6分)
(Ⅱ)要使m2+4m≤3x+y恒成立,只需m2+4m≤(3x+y)min…(7分)
∵x>0,y>0
∴$3x+y=(3x+y)(\frac{1}{x}+\frac{3}{y})=\frac{y}{x}+\frac{9x}{y}+6≥2\sqrt{\frac{y}{x}•\frac{9x}{y}}+6=12$…(10分)
∴m2+4m≤12,即(m-2)(m+6)≤0,
∴-6≤m≤2…(11分)
故m的取值范圍是[-6,2]…(12分)

點評 本題考查基本不等式的運用,考查恒成立問題,考查學生分析解決問題的能力,正確運用基本不等式是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)$f(x)=2sin({ωx-\frac{π}{6}})$的最小正周期為π,則函數(shù)y=f(x)在區(qū)間$[{0,\frac{π}{2}}]$上的最大值和最小值分別是( 。
A.2和-2B.2和0C.2和-1D.$\frac{{\sqrt{3}}}{2}$和$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知全集U={x∈N*|x<8},A={2,4,5},B={1,3,5,7},求A∩(∁UB),(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.P是△ABC邊BC的中線AD上的中點,AD=4,則$\overrightarrow{PA}•({\overrightarrow{PB}+\overrightarrow{PC}})$的值是-8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是[$\frac{3}{2e}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知$\overrightarrow a=(cosx,2),\overrightarrow b=(2sinx,3)$,且$\overrightarrow a$與$\overrightarrow b$共線,則sin2x-2cos2x=(  )
A.$\frac{8}{25}$B.$-\frac{8}{25}$C.$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若a>b>0,則下列不等式成立的是( 。
A.ac2>bc2(c∈R)B.$\frac{a+b}{2}>\sqrt{\frac{{a}^{2}+^{2}}{2}}$C.0.2a>0.2bD.2a$>ln\frac{1}{b+1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設函數(shù)f(x)的定義域為D,如果?x∈D存在唯一的y∈D,使$\frac{f(x)+f(y)}{2}$=C(C為常數(shù))成立,則稱函數(shù)f(x)在D上的“均值”為C,已知四個函數(shù):
①f(x)=x3(x∈R);
②f(x)=($\frac{1}{2}$)x(x∈R);
③f(x)=lnx(x∈(0,+∞))
④f(x)=2sinx(x∈R)
上述四個函數(shù)中,滿足所在定義域上“均值”為1的函數(shù)是①③.(填入所有滿足條件函數(shù)的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知冪函數(shù)f(x)=xα(α為常數(shù))過點$(2,\frac{1}{4})$,則f(x)=x-2

查看答案和解析>>

同步練習冊答案