分析 (Ⅰ)若x<0,利用基本不等式求函數(shù)$f(x)=4x+\frac{3}{x}$的最大值及相應x的值;
(Ⅱ)要使m2+4m≤3x+y恒成立,只需m2+4m≤(3x+y)min,利用$\frac{1}{x}+\frac{3}{y}=1$結合基本不等式,求m的取值范圍.
解答 解:(Ⅰ)∵x<0,∴-x>0,$-\frac{3}{x}>0$…(1分)
∴$f(x)=4x+\frac{3}{x}=-[(-4x)+(-\frac{3}{x})]≤-2\sqrt{(-4x)•(-\frac{3}{x})}=-4\sqrt{3}$…(4分)
當且僅當$-4x=-\frac{3}{x}$即$x=-\frac{{\sqrt{3}}}{2}$時取等號; …(5分)
∴$f{(x)_{max}}=f(-\frac{{\sqrt{3}}}{2})=-4\sqrt{3}$…(6分)
(Ⅱ)要使m2+4m≤3x+y恒成立,只需m2+4m≤(3x+y)min…(7分)
∵x>0,y>0
∴$3x+y=(3x+y)(\frac{1}{x}+\frac{3}{y})=\frac{y}{x}+\frac{9x}{y}+6≥2\sqrt{\frac{y}{x}•\frac{9x}{y}}+6=12$…(10分)
∴m2+4m≤12,即(m-2)(m+6)≤0,
∴-6≤m≤2…(11分)
故m的取值范圍是[-6,2]…(12分)
點評 本題考查基本不等式的運用,考查恒成立問題,考查學生分析解決問題的能力,正確運用基本不等式是關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2和-2 | B. | 2和0 | C. | 2和-1 | D. | $\frac{{\sqrt{3}}}{2}$和$-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{8}{25}$ | B. | $-\frac{8}{25}$ | C. | $\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ac2>bc2(c∈R) | B. | $\frac{a+b}{2}>\sqrt{\frac{{a}^{2}+^{2}}{2}}$ | C. | 0.2a>0.2b | D. | 2a$>ln\frac{1}{b+1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com