分析 (1)通過$\left\{\begin{array}{l}{{a}_{1}q=3}\\{{a}_{1}{q}^{4}=81}\end{array}\right.$計算可知首項和公比,進(jìn)而計算可得結(jié)論;
(2)通過(1)及對數(shù)的性質(zhì)可知bn=n,通過裂項可知$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,并項相加即得結(jié)論.
解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,依題意得
$\left\{\begin{array}{l}{{a}_{1}q=3}\\{{a}_{1}{q}^{4}=81}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=3}\end{array}\right.$,
∴an=3n-1,
Sn=$\frac{1-{3}^{n}}{1-3}$=$\frac{{3}^{n}-1}{2}$;
(2)由(1)知bn=1+log3an=1+(n-1)=n,
∴$\frac{1}{_{n}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴T10=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{10}$-$\frac{1}{11}$
=1-$\frac{1}{11}$
=$\frac{10}{11}$.
點評 本題考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | φ | B. | (1,3) | C. | (1,+∞) | D. | (3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 喜愛運動 | 不喜愛運動 | 總計 | |
| 男 | 10 | 16 | |
| 女 | 6 | 14 | |
| 總計 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com