欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知數(shù)列{an}的前n項和${S_n}=\frac{{{3^{n+1}}-3}}{2}$.
(1)求數(shù)列{an}的通項公式,并證明{an}是等比數(shù)列;
(2)令bn=(2n+1)an(n∈N*),求數(shù)列{bn}的前n項和Tn

分析 (I)通過n=1可知首項,通過n≥2、利用an=Sn-Sn-1可知通項,進而可得結論;
(II)通過${a_n}={3^n}$可知${b_n}=(2n+1){3^n}$,利用錯位相減法計算即得結論.

解答 (I)證明:①當n=1時,a1=S1=3;
②當n≥2時,${a_n}={S_n}-{S_{n-1}}=\frac{1}{2}({3^{n+1}}-{3^n})={3^n}$;
綜合①②,可得${a_n}={3^n}$,
∵$\frac{{{a_{n+1}}}}{a_n}=3(n∈{N_+})$,
∴數(shù)列{an}是公比為3的等比數(shù)列;
(II)解:∵${a_n}={3^n}$,bn=(2n+1)an(n∈N*),
∴${b_n}=(2n+1){3^n}$,
Tn=3•3+5•32+7•33+…+(2n-1)•3n-1+(2n+1)•3n,
∴3Tn=3•32+5•33+7•34+…+(2n-1)•3n+(2n+1)•3n+1
兩式相減得:-2Tn=9+2•(32+33+…+3n-1+3n)-(2n+1)•3n+1
=9+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n+1)•3n+1
=-2n•3n+1,
∴Tn=n•3n+1

點評 本題考查等比數(shù)列的判定,考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,a1=1,且an+1+$\frac{2}{3}$Sn=1.
(1)求an
(2)令bn=n+an,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.二項展開式(2x-1)10中x的奇次冪項的系數(shù)之和為( 。
A.$\frac{1+{3}^{10}}{2}$B.$\frac{1-{3}^{10}}{2}$C.$\frac{{3}^{10}-1}{2}$D.-$\frac{1+{3}^{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.△ABC的三個內角A,B,C所對的邊分別是a,b,c,設$\overrightarrow p=(a+c,b)$,$\overrightarrow q=(b-a,c-a)$,若$\overrightarrow p$∥$\overrightarrow q$,則角C的大小為( 。
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c.若b=1,A=2B,則a的范圍為$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,角A、B、C所對的邊分別為a、b、c,且滿足asinB=$\sqrt{3}$bcosA.
(Ⅰ)求角A的大。
(Ⅱ)若a=4,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當點P(x,y)是函數(shù)y=f(x)圖象上的點時,點Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點.
(1)寫出函數(shù)y=g(x)的解析式;
(2)若當x∈[a+2,a+3]時,恒有|f(x)-g(x)|≤1,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若直線l1:(2a-1)x-y+3=0與直線l2:y=4x-3互相垂直,則a=$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)=-x3+ax在[0,+∞)上是減函數(shù),則a的取值范圍是( 。
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

同步練習冊答案