分析 (I)通過n=1可知首項,通過n≥2、利用an=Sn-Sn-1可知通項,進而可得結論;
(II)通過${a_n}={3^n}$可知${b_n}=(2n+1){3^n}$,利用錯位相減法計算即得結論.
解答 (I)證明:①當n=1時,a1=S1=3;
②當n≥2時,${a_n}={S_n}-{S_{n-1}}=\frac{1}{2}({3^{n+1}}-{3^n})={3^n}$;
綜合①②,可得${a_n}={3^n}$,
∵$\frac{{{a_{n+1}}}}{a_n}=3(n∈{N_+})$,
∴數(shù)列{an}是公比為3的等比數(shù)列;
(II)解:∵${a_n}={3^n}$,bn=(2n+1)an(n∈N*),
∴${b_n}=(2n+1){3^n}$,
Tn=3•3+5•32+7•33+…+(2n-1)•3n-1+(2n+1)•3n,
∴3Tn=3•32+5•33+7•34+…+(2n-1)•3n+(2n+1)•3n+1,
兩式相減得:-2Tn=9+2•(32+33+…+3n-1+3n)-(2n+1)•3n+1
=9+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n+1)•3n+1
=-2n•3n+1,
∴Tn=n•3n+1.
點評 本題考查等比數(shù)列的判定,考查數(shù)列的通項及前n項和,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1+{3}^{10}}{2}$ | B. | $\frac{1-{3}^{10}}{2}$ | C. | $\frac{{3}^{10}-1}{2}$ | D. | -$\frac{1+{3}^{10}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-∞,0) | B. | (-∞,0] | C. | (0,+∞) | D. | [0,+∞) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com