分析 (1)取DE中點(diǎn)N,連接MN,AN,由三角形中位線定理,結(jié)合已知中AB∥CD,AB=AD=1,CD=2,易得四邊形ABMN為平行四邊形,所以BM∥AN,再由線面平面的判定定理,可得BM∥平面ADEF.
(2)欲證BC⊥平面BDE,根據(jù)直線與平面垂直的判定定理可知只需證BC與平面BDE內(nèi)兩相交直線垂直,根據(jù)面面垂直的性質(zhì)可知ED⊥平面ABCD,則ED⊥BC,根據(jù)勾股定理可知BC⊥BD,滿足定理所需條件;
(3)利用三棱錐的體積公式直接計(jì)算即可.
解答
(1)證明:取DE中點(diǎn)N,連接MN,AN
在△EDC中,M、N分別為EC,ED的中點(diǎn),
所以MN∥CD,且MN=$\frac{1}{2}$CD.
由已知AB∥CD,AB=$\frac{1}{2}$CD,所以MN∥AB,且MN=AB.
所以四邊形ABMN為平行四邊形,所以BM∥AN
又因?yàn)锳N?平面ADEF,且BM?平面ADEF,
所以BM∥平面ADEF.
(2)證明:在正方形ADEF中,ED⊥AD.
又因?yàn)槠矫鍭DEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD.
所以ED⊥BC.
在直角梯形ABCD中,AB=AD=2,CD=4,可得BC=2$\sqrt{2}$
在△BCD中,BD=BC=2$\sqrt{2}$,CD=4,
所以BD2+BC2=CD2.
所以BC⊥BD.
所以BC⊥平面BDE.
(3)解:由(2)可知,BC⊥平面BDE,
所以三棱錐M-DEB的體積=$\frac{1}{3}×\frac{1}{2}×2×2\sqrt{2}×2\sqrt{2}$=$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與平面平行的判定,直線與平面垂直的判定,三棱錐體積的計(jì)算,熟練掌握空間直線與平面不同位置關(guān)系(平行和垂直)的判定定理、性質(zhì)定理、定義及幾何特征是解答本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,1) | B. | [1,2) | C. | (0,1] | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | i≤3 | B. | i≤4 | C. | i≤5 | D. | i≤6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com