分析 (1)結(jié)論:四邊形FACD是平行四邊形.只要證明AD∥AC,CD∥AF即可.
(2)連接GE,由△EFG∽△CDE,推出$\frac{EF}{CD}$=$\frac{EG}{EC}$,求出EF,即可解決問題.
解答 解:(1)結(jié)論:四邊形FACD是平行四邊形.
理由:∵四邊形ABCD是菱形,
∴BD⊥AC,CD∥AB,
∴∠AEB=90°,
∵EF是直徑,
∴∠FDE=∠AEB=90°,![]()
∴AD∥AC,∵CD∥AF,
∴四邊形FACD是平行四邊形.
(2)如圖,連接EG.
∵EF是直徑,
∴∠EGF=90°,
四邊形ABCD是菱形,
∴AC⊥BD,
∴∠EGF=∠DEC=90°,
∵∠EFG=∠EDC,
∴△EFG∽△CDE,
∴$\frac{EF}{CD}$=$\frac{EG}{EC}$,
∵DG=GC,
∴GE=DG=GC=$\frac{1}{2}$CD=$\frac{1}{2}$$\sqrt{{m}^{2}+{n}^{2}}$,
∴$\frac{EF}{\sqrt{{m}^{2}+{n}^{2}}}$=$\frac{\frac{1}{2}\sqrt{{m}^{2}+{n}^{2}}}{m}$,
∴EF=$\frac{{m}^{2}+{n}^{2}}{2m}$,
∴⊙O的面積與菱形ABCD的面積之比=π($\frac{{m}^{2}+{n}^{2}}{4m}$)2÷2mn=$\frac{π({m}^{2}+{n}^{2})}{32{m}^{3}n}$.
點(diǎn)評(píng) 本題考查菱形的性質(zhì)、圓的有關(guān)知識(shí)、相似三角形的判定和性質(zhì)、平行四邊形頂點(diǎn)等知識(shí),解題的關(guān)鍵是靈活應(yīng)用這些知識(shí)解決問題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 60° | B. | 40° | C. | 30° | D. | 20° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com