分析 作FQ⊥QG于Q,如圖,根據(jù)切線的性質(zhì)得FQ=$\frac{1}{2}$DE,再證明四邊形FQGD為正方形得到DG=FG=$\frac{1}{2}$DE,再利用勾股定理計算出AB=10,接著證明Rt△BDE∽Rt△BCA,利用相似比可得BD=$\frac{4}{3}$DE,然后利用BD=AG得到$\frac{4}{3}$DE+$\frac{1}{2}$DE+$\frac{4}{3}$DE=10,然后就解方程即可.
解答 解:作FQ⊥QG于Q,如圖,
∵GH與⊙F相切,![]()
∴FQ=$\frac{1}{2}$DE,
∵DE⊥AB,HG⊥AB,
∴四邊形FQGD為正方形,
∴DG=FG=$\frac{1}{2}$DE,
在Rt△ACB中,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∵∠EBD=∠ABC,
∴Rt△BDE∽Rt△BCA,
∴DE:AC=BD:BC,即DE:6=BD:8,
∴BD=$\frac{4}{3}$DE,
∵BD=AG,
∴$\frac{4}{3}$DE+$\frac{1}{2}$DE+$\frac{4}{3}$DE=10,
∴DE=$\frac{60}{19}$.
點評 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.由定理可知,若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡記作:見切點,連半徑,見垂直.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 4$\sqrt{3}$ | C. | 8 | D. | 8$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | 8 | C. | 4$±\sqrt{2}$ | D. | 0或8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com