分析 (1)由△AOE≌△COF即可得出結(jié)論.
(2)圖2中的結(jié)論為:CF=OE+AE,延長EO交CF于點(diǎn)G,只要證明△EOA≌△GOC,△OFG是等邊三角形,即可解決問題.
圖3中的結(jié)論為:CF=OE-AE,延長EO交FC的延長線于點(diǎn)G,證明方法類似.
解答 解:(1)∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,
$\left\{\begin{array}{l}{∠AEO=∠CFO}\\{∠AOE=∠COF}\\{AO=OC}\end{array}\right.$,
∴△AOE≌△COF,
∴OE=OF.
(2)圖2中的結(jié)論為:CF=OE+AE.
圖3中的結(jié)論為:CF=OE-AE.
選圖2中的結(jié)論證明如下:
延長EO交CF于點(diǎn)G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,
$\left\{\begin{array}{l}{∠EAO=∠GCO}\\{AO=OC}\\{∠AOE=∠COG}\end{array}\right.$,
∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在Rt△EFG中,∵EO=OG,![]()
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等邊三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE.
選圖3的結(jié)論證明如下:
延長EO交FC的延長線于點(diǎn)G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,![]()
$\left\{\begin{array}{l}{∠AEO=∠G}\\{∠AOE=∠GOC}\\{AO=OC}\end{array}\right.$,
∴△AOE≌△COG,
∴OE=OG,AE=CG,
在Rt△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°-30°=60°,
∴△OFG是等邊三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG-CG,
∴CF=OE-AE.
點(diǎn)評 本題考查四邊形綜合題、全等三角形的判定和性質(zhì)、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?碱}型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 項(xiàng)目 | 學(xué)生數(shù)(名) | 百分比 |
| 丟沙包 | 20 | 10% |
| 打籃球 | 60 | p% |
| 跳大繩 | n | 40% |
| 踢毽球 | 40 | 20% |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{a}$+$\sqrt$=$\sqrt{ab}$ | B. | (-a2)2=-a4 | C. | (a-2)2=a2-4 | D. | $\sqrt{a}$÷$\sqrt$=$\sqrt{\frac{a}}$(a≥0,b>0) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com