| A. | 50° | B. | 55° | C. | 60° | D. | 45° |
分析 首先延長PF交AB的延長線于點G.根據(jù)已知可得∠B,∠BEF,∠BFE的度數(shù),再根據(jù)余角的性質(zhì)可得到∠EPF的度數(shù),從而不難求得∠FPC的度數(shù).
解答 解:延長PF交AB的延長線于點G.如圖所示:
在△BGF與△CPF中,$\left\{\begin{array}{l}{∠GBF=∠PCF}\\{BF=CF}\\{∠BFG=∠CFG}\end{array}\right.$,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F為P
G中點.
又∵由題可知,∠BEP=90°,
∴EF=$\frac{1}{2}$PG,
∵PF=$\frac{1}{2}$PG,
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP-∠FEP=∠EPC-∠EPF,即∠BEF=∠FPC,
∵四邊形ABCD為菱形,
∴AB=BC,∠ABC=180°-∠A=80°,
∵E,F(xiàn)分別為AB,BC的中點,
∴BE=BF,∠BEF=∠BFE=$\frac{1}{2}$(180°-80°)=50°,
∴∠FPC=50°;
故選:A.
點評 此題主要考查了菱形的性質(zhì)以及全等三角形的判定與性質(zhì).注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 分?jǐn)?shù)段 | 頻數(shù)(人數(shù)) |
| 60≤x<70 | a |
| 70≤x<80 | 16 |
| 80≤x<90 | 24 |
| 90≤x<100 | b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com