分析 (1)①根據(jù)題意可以將圖形補(bǔ)充完整;
②根據(jù)①中補(bǔ)充完整的圖形可以構(gòu)造兩個(gè)全等的三角形,從而可以得到線段AM,BM,DN之間的數(shù)量關(guān)系;
(2)寫出線段AM,BM,DN之間的數(shù)量關(guān)系,仿照(1)中②的證明方法可以證明.
解答 解:
(1)①補(bǔ)全圖形,如右圖1所示.
②數(shù)量關(guān)系:AM=BM+DN,
證明:在CD的延長線上截取DE=BM,連接AE,
∵四邊形ABCD是正方形
∴∠1=∠B=90°,AD=AB,AB∥CD
∴∠6=∠BAN
在△ADE和△ABM中
$\left\{\begin{array}{l}AD=AB\\∠1=∠B\\ DE=BM\end{array}\right.$
∴△ADE≌△ABM(SAS)
∴AE=AM,∠3=∠2
又∵AN平分∠MAD,
∴∠5=∠4,
∴∠EAN=∠BAN,
又∵∠6=∠BAN,
∴∠EAN=∠6,
∴AE=NE,
又∵AE=AM,NE=DE+DN=BM+DN,
∴AM=BM+DN;
(2)數(shù)量關(guān)系:AM=DN-BM,
證明:在線段DC上截取線段DE=BM,如圖2所示,![]()
∵四邊形ABCD是正方形,
∴AB=AD,∠ABM=∠ADE=90°,
∴△ABM≌△ADE(SAS),
∴∠1=∠4,
又∵AN平分∠DAM,
∴∠MAN=∠DAN,
∴∠2=∠3,
∵AB∥CD,
∴∠2=∠ANE,
∴∠3=∠ANE,
∴AE=EN,
∵DN=DE+EN,AE=AM=EN,BM=DE,
∴DN=BM+AM,
即AM=DN-BM.
點(diǎn)評(píng) 本題考查四邊形綜合題,解題的關(guān)鍵是明確題意,找出所求問題需要的條件,做出合適的輔助線,構(gòu)造全等的三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
| 原料 型號(hào) | 甲種原料(千克) | 乙種原料(千克) |
| A產(chǎn)品(每件) | 9 | 3 |
| B產(chǎn)品(每件) | 4 | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x(a-b)=ax-bx | B. | ${x}^{2}-\frac{1}{{x}^{2}}=(x+\frac{1}{x})(x-\frac{1}{x})$ | ||
| C. | x2+4x+4=(x+2)2 | D. | ax+bx+c=x(a+b)+c |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com