欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

6.順次連接等腰梯形各邊中點所得的四邊形的形狀是( 。
A.等腰梯形B.平行四邊形C.矩形D.菱形

分析 順次連接等腰梯形各邊中點所得的四邊形是菱形,理由為:根據(jù)題意畫出相應(yīng)的圖形,連接AC、BD,由等腰梯形的性質(zhì)得到AC=BD,由E、H分別為AD與DC的中點,得到EH為△ADC的中位線,利用三角形的中位線定理得到EH等于AC的一半,EH平行于AC,同理得到FG為△ABC的中位線,得到FG等于AC的一半,F(xiàn)G平行于AC,進(jìn)而得到EH與FG平行且相等,利用一組對邊平行且相等的四邊形為平行四邊形得到EFGH為平行四邊形,再由EF為△ABD的中位線,得到EF等于BD的一半,進(jìn)而由AC=BD得到EF=EH,根據(jù)一對鄰邊相等的平行四邊形為菱形可得證.

解答 解:順次連接等腰梯形各邊中點所得的四邊形是菱形,理由為:
已知:等腰梯形ABCD,E、F、G、H分別為AD、AB、BC、CD的中點,
求證:四邊形EFGH為菱形.
證明:連接AC,BD,
∵四邊形ABCD為等腰梯形,
∴AC=BD,
∵E、H分別為AD、CD的中點,
∴EH為△ADC的中位線,
∴EH=$\frac{1}{2}$AC,EH∥AC,
同理FG=$\frac{1}{2}$AC,F(xiàn)G∥AC,
∴EH=FG,EH∥FG,
∴四邊形EFGH為平行四邊形,
同理EF為△ABD的中位線,
∴EF=$\frac{1}{2}$BD,又EH=$\frac{1}{2}$AC,且BD=AC,
∴EF=EH,
則四邊形EFGH為菱形.
故選:D.

點評 此題考查了三角形的中位線定理,等腰梯形的性質(zhì),平行四邊形的判定,以及菱形的判定,熟練掌握三角形中位線定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.關(guān)于反比例函數(shù)y=$\frac{2}{x}$,下列說法正確的是( 。
A.函數(shù)圖象位于二、四象限B.經(jīng)過點(-4,0.5)
C.y的值隨x的增大而增大D.函數(shù)圖象關(guān)于直線y=x軸對稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.解下列一元二次方程:x2+4x-2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系中,點M(4,t-3)到x軸距離是到y(tǒng)軸的距離2倍,則t的值為11或-5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在矩形ABCD中,對角線AC與BD相交于點O,AE平分∠BAD交BC于點E,若∠CAE=15°,則∠BOE的度數(shù)等于75°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,M、N分別是平行四邊形ABCD的對邊AD、BC的中點,且AD=2AB,連接AN、DN、BM、CM,交點分別為P、Q.請判斷四邊形PMQN是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在等腰梯形ABCD中,AD∥BC,過點A作AE∥CD,交BC于點E,若AB=2,AD=1.則四邊形AECD的周長是6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.一次函數(shù)y=kx=b(b≠0)的圖象如圖所示,當(dāng)y>0時,x的取值范圍是(  )
A.x>2B.x>0C.x<2D.x<0

查看答案和解析>>

同步練習(xí)冊答案