分析 由角平分線的性質(zhì)與∠ABC=∠ADC,∠AED=∠ABF,易證得∠AED=∠CDE,即可證得AB∥CD,繼而證得結(jié)論.
解答 證明:∵BF,DE分別平分∠ABC,∠ADC(已知)
∴∠ABF=$\frac{1}{2}$∠ABC,∠CDE=$\frac{1}{2}$∠ADC(角平分線的定義)
∵∠ABC=∠ADC=(已知)
∴∠ABF=∠CDE(等式的性質(zhì))
∵∠AED=∠ABF(已知)
∴∠AED=∠CDE(等量代換)
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠A+∠ADC=180°,∠C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵∠ABC=∠ADC(已知)
∴∠A=∠C(等式的性質(zhì)).
故答案為:已知;角平分線的定義;已知;等式的性質(zhì);已知;等量代換;內(nèi)錯(cuò)角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ);等式的性質(zhì).
點(diǎn)評(píng) 此題考查了平行線的性質(zhì)與判定.注意掌握內(nèi)錯(cuò)角相等,兩直線平行與兩直線平行,同旁內(nèi)角互補(bǔ)的應(yīng)用是解此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com