分析 先判斷△ACE為等腰三角形,在Rt△AEF中表示出EF、AF,在Rt△BEF中求出BF,根據(jù)AB=AF-BF即可得出答案.
解答 解:依題意可得:∠EAB=30°,∠ACE=15°,
又∵∠AEB=∠ACE+∠CAE
∴∠CAE=15°,
即△ACE為等腰三角形,
∴AE=CE=100m,
在Rt△AEF中,∠AEF=60°,
∴EF=AEcos60°=50m,AF=AEsin60°=50$\sqrt{3}$m,
在Rt△BEF中,∠BEF=30°,
∴BF=EFtan30°=50×$\frac{\sqrt{3}}{3}$=$\frac{50\sqrt{3}}{3}$m,
∴AB=AF-BF=50$\sqrt{3}$-$\frac{50\sqrt{3}}{3}$=$\frac{100\sqrt{3}}{3}$≈58(米).
答:塔高AB大約為58米.
點評 本題考查了解直角三角形的知識,解答本題的關(guān)鍵是構(gòu)造直角三角形,利用三角函數(shù)表示出相關(guān)線段的長度,難度一般.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x5•x=x5 | B. | x5-x2=x3 | C. | (-y)2 (-y)7=y9 | D. | -y3•(-y)7=y10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com