分析 過(guò)點(diǎn)P作MN∥BC,分別交AB、CD于點(diǎn)M、N,根據(jù)矩形的性質(zhì)和直角三角形的性質(zhì),可證明△QNP≌△PMB,可證明PQ=PB,設(shè)AP=x,結(jié)合PQ=PB可分別表示出AM、BM、CQ和PN,可表示出△PBC和△PCQ的面積,從而表示出四邊形PBCQ的面積,從而得到y(tǒng)與x的關(guān)系式.
解答 解:過(guò)點(diǎn)P作MN∥BC,分別交AB、CD于點(diǎn)M、N,如圖1,![]()
則四邊形AMND和四邊形BCNM都是矩形,△AMP和△CNP都是等腰三角形,
∴NP=NC=MB.
∵∠BPQ=90°,
∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°,
∴∠QPN=∠PBM.
又∵∠QNP=∠PMB=90°
在△QNP和△PMB中,
$\left\{\begin{array}{l}{∠QPN=∠PBM}\\{NP=MB}\\{∠QNP=∠PMB}\end{array}\right.$,
∴△QNP≌△PMB(ASA),
∴NQ=MP;
設(shè)AP=x,則AM=MP=NQ=DN=$\frac{\sqrt{2}}{2}$x,BM=PN=CN=1-$\frac{\sqrt{2}}{2}$x,
∴CQ=CD-DQ=1-2×$\frac{\sqrt{2}}{2}$x=1-$\sqrt{2}$x
∴S△PBC=$\frac{1}{2}$BC•BM=$\frac{1}{2}$×1×(1-$\frac{\sqrt{2}}{2}$x)=$\frac{1}{2}$-$\frac{\sqrt{2}}{2}$x,
S△PCQ=$\frac{1}{2}$CQ•PN=$\frac{1}{2}$×(1-$\sqrt{2}$x)(1-$\frac{\sqrt{2}}{2}$x)=$\frac{1}{2}$-$\frac{3\sqrt{2}}{4}$x+$\frac{1}{2}$x2,
∴S四邊形PBCQ=S△PBC+S△PCQ=$\frac{1}{2}$x2-$\sqrt{2}$x+1,
即y=$\frac{1}{2}$x2-$\sqrt{2}$x+1(0≤x<$\frac{\sqrt{2}}{2}$).
點(diǎn)評(píng) 本題主要考查四邊形的綜合應(yīng)用,涉及正方形的性質(zhì)、全等三角形的判定和性質(zhì)、直角三角形的性質(zhì)、等腰三角形的性質(zhì)和勾股定理等知識(shí).構(gòu)造三角形全等和用x分別表示出△PBC和△PCQ的面積是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com