分析 (1)根據(jù)菱形的性質(zhì),利用SAS判定△ABE≌△ADF,從而求得AE=AF;
(2)利用切線的性質(zhì)和直角三角形的兩個銳角互余的性質(zhì)得到圓心角∠PAO的度數(shù),然后利用圓周角定理來求∠ABC的度數(shù).
解答 證明:(1)∵四邊形ABCD是菱形,
∴AB=BC=CD=AD,∠B=∠D
∵CE=CF,
∴BE=DF
在△ABE與△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠B=∠D}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△ADF.
∴AE=AF;
(2)∵AB是⊙O的直徑,直線PA與⊙O相切于點(diǎn)A,
∴∠PAO=90°.
又∵∠OPA=40°,
∴∠POA=50°,
∴∠ABC=$\frac{1}{2}$∠POA=25°.
點(diǎn)評 本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.同時考查了切線的性質(zhì),圓周角定理.圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
| 2x | 3 | 2 |
| y | -3 | |
| 4y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3$\sqrt{2}$-$\sqrt{2}$=3 | B. | $\sqrt{2}$+$\sqrt{5}$=$\sqrt{7}$ | C. | $\sqrt{2}$×$\sqrt{5}$=$\sqrt{10}$ | D. | $\sqrt{(-15)^{2}}$=-15 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com