分析 (1)只要證明△EPA≌△DPC,即可推出AE=CD,可得AD+AE=AD+DC=AC=4;
(2)[類比探究]:如圖2中,作PK∥BC交AC于K.連接AE.利用(1)中的結(jié)論即可解決問題;
(3)[拓展遷移]:如圖3中,作PJ⊥AD于J,在AD上取一點K,使得PK=PA.由△PDK≌△PEA,推出DK=AE,推出AD-AE=AK=2AJ=2•m•sin$\frac{α}{2}$即可解決問題;
解答 (1)解:如圖1中,![]()
∵△PDE.△PAC都是等邊三角形,
∴PE=PD,PA=PC,∠EPD=∠APC=60°,
∴∠EPA=∠DPC,
∴△EPA≌△DPC,
∴AE=CD,
∴AD+AE=AD+DC=AC=4.
(2)[類比探究]:解:AD+AE=3
理由:如圖2中,作PK∥BC交AC于K.連接AE.![]()
易證△PAK是等邊三角形,
由上面題目可知.AE+AD=AK=3.
(3)[拓展遷移]:解:如圖3中,作PJ⊥AD于J,在AD上取一點K,使得PK=PA.![]()
易證∠APK=∠DPE=α,
∵PD=PE,PK=PA,
∴∠DPK=∠EPA,
∴△PDK≌△PEA,
∴DK=AE,
∴AD-AE=AK=2AJ=2•m•sin$\frac{α}{2}$.
∴AD-AE=2m•sin$\frac{α}{2}$.
點評 本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、銳角三角函數(shù)等知識,解題的關(guān)鍵正確尋找全等三角形解決問題,學(xué)會添加常用輔助線,構(gòu)造全等三角形,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 逐漸變小 | B. | 逐漸變大 | C. | 時大時小 | D. | 保持不變 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com