欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.在平面直角坐標(biāo)系中,如果拋物線y=3x2不動,而把x軸、y軸分別向上、向右平移2個單位,那么在新坐標(biāo)系中拋物線的解析式是( 。
A.y=3(x-2)2+2B.y=3(x+2)2-2C.y=3(x-2)2+2D.y=3(x+2)2+2

分析 該題實際上是將拋物線y=3x2向下、向左平移2個單位,根據(jù)“左加右減”的規(guī)律解答即可.

解答 解:拋物線y=3x2的頂點坐標(biāo)為(0,0),把點(0,0)向下、向左平移2個單位(-2,-2),所以在新坐標(biāo)系中此拋物線的解析式為y=3(x+2)2-2.
故選:B.

點評 本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通?衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.對于平面直角坐標(biāo)系xOy中的點P和⊙C,給出如下定義:若存在過點P的直線l交⊙C于異于點P的A,B兩點,在P,A,B三點中,位于中間的點恰為以另外兩點為端點的線段的中點時,則稱點P為⊙C 的相鄰點,直線l為⊙C關(guān)于點P的相鄰線.
(1)當(dāng)⊙O的半徑為1時,
①分別判斷在點D($\frac{1}{2}$,$\frac{1}{4}$),E(0,-$\sqrt{3}$),F(xiàn)(4,0)中,是⊙O的相鄰點有D或E;
②請從①中的答案中,任選一個相鄰點,在圖1中做出⊙O關(guān)于它的一條相鄰線,并說明你的作圖過程;
③點P在直線y=-x+3上,若點P為⊙O的相鄰點,求點P橫坐標(biāo)的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=-$\frac{\sqrt{3}}{3}x+2\sqrt{3}$與x軸,y軸分別交于點M,N,若線段MN上存在⊙C的相鄰點P,直接寫出圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.某校參加校園青春健身操比賽的16名運動員的身高如表:
 身高(cm) 172 173 175176 
 人數(shù)(個) 44
則該校16名運動員身高的平均數(shù)和中位數(shù)分別是(單位:cm)( 。
A.173cm,173cmB.174cm,174cmC.173cm,174cmD.174cm,175cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.如圖,某電信部門計劃修建一條連接B、C兩地的電纜,測量人員在山腳A點測得B、C兩地的仰角分別為30°、45°,在B地測得C地的仰角為60°.已知C地比A地高200米,電纜BC至少長多少米?($\sqrt{3}$≈1.732,$\sqrt{2}$≈1.414,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.在一次課外實踐活動中,老師要求同學(xué)們利用測角儀和皮尺估測教學(xué)樓AB的高度.同學(xué)們在教學(xué)樓的正前方D處用高為1米的測角儀測的教學(xué)樓頂端A的仰角為30°,然后他們向教學(xué)樓方向前進30米到達E處,又測得A的仰角為60°,則教學(xué)樓高度AB是多少米?(精確到0.1米,參考數(shù)據(jù)$\sqrt{3}$=1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.計算:(-1)2-$\sqrt{4}$×(2013-π)0+($\frac{1}{3}$)-1=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.不等式組$\left\{\begin{array}{l}{2x-1>0}\\{x+1≥0}\end{array}\right.$的解集是(  )
A.x$>\frac{1}{2}$B.-1$≤x<\frac{1}{2}$C.x$<\frac{1}{2}$D.x≥-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,拋物線F:y=ax2+bx+c(a>0)與y軸相交于點C,直線L1經(jīng)過點C且平行于x軸,將L1向上平移t(t>0)個單位得到直線L2.設(shè)L1與拋物線F的交點為C、D,L2與拋物線F的交點為A、B,連結(jié)AC、BC.
(1)當(dāng)a=$\frac{1}{2}$,b=-$\frac{3}{2}$,c=1,t=2時,判斷△ABC的形狀,并說明理由;
(2)若△ABC為直角三角形,求t的值;(用含a的式子表示)
(3)在(2)的條件下,若點A關(guān)于y軸的對稱點A′恰好在拋物線F的對稱軸上,連結(jié)A′C,BD,若四邊形A′CDB的面積為2$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,小東將一張長AD為12、寬AB為4的矩形紙片按如下方式進行折疊:在紙片的一邊BC上分別取點P,Q,使得BP=CQ,連結(jié)AP、DQ,將△ABP、△DCQ分別沿AP、DQ折疊得△APM,△DQN,連結(jié)MN.小東發(fā)現(xiàn)線段MN的位置和長度隨著點P、Q的位置變化而發(fā)生改變.
(1)請在圖1中過點M,N分別畫ME⊥BC于點E,NF⊥BC于點F.
求證:①ME=NF;②MN∥BC.
(2)如圖1,若BP=3,求線段MN的長;
(3)如圖2,當(dāng)點P與點Q重合時,求MN的長.

查看答案和解析>>

同步練習(xí)冊答案