分析 (1)由等邊三角形的性質(zhì)得出AB=AC,AD=AE,∠BAC=∠EAD,從而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.
(2)判定BD與CE的關(guān)系,可以根據(jù)角的大小來判定.由∠BAC=∠DAE可得∠BAD=∠CAE,進而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.
(3)根據(jù)①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°
(4)根據(jù)②∠BFC=∠BAC,所以∠BFC=α
解答 解:(1)證明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE
在△BAD與△CAE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
(2)BD與CE相互垂直,BD=CE.
由(1)知,△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,BD=CE,
∵∠BAC=90°,
∴∠CBF+∠BCF=∠ABC+∠ACB=90°,
∴∠BFC=90°
∴BD⊥CE.
解:(3)由題①得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=60°,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=60°.
(4)由題①得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=α,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=α.
點評 此題是三角形綜合題,主要考查了全等三角形的判定和性質(zhì),直角三角形的性質(zhì),等邊三角形的性質(zhì)以及角之間的關(guān)系,判斷出∠BAD=∠CAE是解本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x≥-1 | B. | x>-1 | C. | x>-1且x≠0 | D. | x≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | △AOD∽△BOC | B. | △ACD∽△BDC | C. | △AOB∽△COD | D. | △ABD∽△BAC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com