分析 (1)根據(jù)矩形的性質(zhì)、軸對(duì)稱的性質(zhì)可得到AD=EC,AE=DC,即可證到△DEC≌△EDA(SSS);
(2)易證AF=CF,設(shè)DF=x,則有AF=4-x,然后在Rt△ADF中運(yùn)用勾股定理就可求出DF的長(zhǎng).
(3)根據(jù)三角形的內(nèi)角和定理求得∠APF=∠AFP根據(jù)等角對(duì)等邊得出AF=AP進(jìn)而得出FC=AP,從而證得四邊形APCF是平行四邊形,又因?yàn)镕P⊥AC證得四邊形APCF為菱形,然后根據(jù)菱形的面積S菱形=$\frac{1}{2}$PF•AC=AP•AD,即可求得.
解答 (1)
證明:∵四邊形ABCD是矩形,
∴AD=BC,AB=CD,AB∥CD,
∴∠ACD=∠CAB,
∵△AEC由△ABC翻折得到,
∴AB=AE,BC=EC,∠CAE=∠CAB,
∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE與△CED中,
$\left\{\begin{array}{l}{AD=CE}\\{DE=ED}\\{D=EA}\end{array}\right.$,
∴△DEC≌△EDA(SSS);
(2)解:如圖1,∵∠ACD=∠CAE,
∴AF=CF,
設(shè)DF=x,則AF=CF=4-x,
在RT△ADF中,AD2+DF2=AF2,
即32+x2=(4-x)2,
解得;x=$\frac{7}{8}$,
即DF=$\frac{7}{8}$.
(3)解:四邊形APCF為菱形,
設(shè)AC、FP相較于點(diǎn)O
∵FP⊥AC
∴∠AOF=∠AOP
又∵∠CAE=∠CAB,
∴∠APF=∠AFP
∴AF=AP
∴FC=AP
又∵AB∥CD
∴四邊形APCF是平行四邊形
又∵FP⊥AC
∴四邊形APCF為菱形,
在矩形ABCD中,AB=4,AD=3,
∴AC=5,
∵S菱形=$\frac{1}{2}$PF•AC=AP•AD,
∵AP=AF=4-$\frac{7}{8}$=$\frac{25}{8}$
∴PF=$\frac{2×\frac{25}{8}×3}{5}$=$\frac{15}{4}$.
點(diǎn)評(píng) 本題主要考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定、軸對(duì)稱的性質(zhì)等知識(shí),解決本題的關(guān)鍵是明確折疊的性質(zhì),得到相等的線段,角.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8cm | B. | 10cm | C. | 12cm | D. | 11cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com