分析 根據(jù)垂直的定義以及等量代換可知∠CBE=∠ACD,根據(jù)已知條件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根據(jù)全等三角形的判定AAS即可證明△BEC≌△CDA,再利用全等三角形的性質(zhì)證明即可.
解答 證明:∵BE⊥CE,AD⊥CE,
∴∠BEC=∠CDA=90°,
∴∠EBC+∠ECB=90°,
又∵∠DCA+∠ECB=90°,
∴∠EBC=∠DCA,
又∵BC=AC,
在△BEC與△CDA中,
$\left\{\begin{array}{l}{∠BEC=∠CDA}\\{∠CBE=∠ACD}\\{BC=AC}\end{array}\right.$,
∴△BEC≌△CDA(AAS),
∴BE=CD.
點(diǎn)評(píng) 本題考查了全等三角形的判定定理,關(guān)鍵是根據(jù)AAS證明兩三角形全等,難度適中.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 甲班 | B. | 乙班 | C. | 丙班 | D. | 丁班 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1)(2) | B. | (1)(3) | C. | (2)(3) | D. | (1)(2)(3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{4}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com