欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習題
 0  252475  252483  252489  252493  252499  252501  252505  252511  252513  252519  252525  252529  252531  252535  252541  252543  252549  252553  252555  252559  252561  252565  252567  252569  252570  252571  252573  252574  252575  252577  252579  252583  252585  252589  252591  252595  252601  252603  252609  252613  252615  252619  252625  252631  252633  252639  252643  252645  252651  252655  252661  252669  266669 

科目: 來源: 題型:填空題

9.若tanα=$\frac{3}{4}$,α為第三象限角,則sinα=-$\frac{3}{5}$;cotα=$\frac{4}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知點橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離小率為$\frac{1}{2}$,F(xiàn)(1,0)為橢圓的一個焦點.
(I)求橢圓C的方程;
(Ⅱ)如圖,設(shè)B1B2是橢圓C的短軸上的下頂點和上頂點,P是橢圓上異于B1B2的一點,直線B1P與x軸交M,直線B2P與x軸交于點N,又OT是由原點做出的經(jīng)過M,N兩點的圓的切線,T為切點,求|OT|的長.

查看答案和解析>>

科目: 來源: 題型:填空題

7.設(shè)點A(x1,y1),B(x2,y2)是橢圓$\frac{{x}^{2}}{4}$+y2=1上兩點,若過點A,B且斜率分別為-$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的兩直線交于點P,且直線OA與直線OB的斜率之積為-$\frac{1}{4}$,E($\sqrt{6}$,0),則|PE|的最小值為2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.求經(jīng)過棱長為1的正方體ABCD-A1B1C1D1的棱AA1和CC1的中點E、F及點D1的截面,并求截面與正方體的下底面以及正方體側(cè)面所圍成的幾何體的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

5.據(jù)說偉大的阿基米德死了以后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑.在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑與圓柱底面的直徑和圓柱的高相等,圓錐的頂點在圓柱上底面的圓心,圓錐的底面是圓柱的下底面.試計算出圖形中圓錐、球、圓柱的體積比.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知雙曲線C:16x2-9y2=144,則C的離心率為( 。
A.$\frac{25}{16}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{25}{9}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.f(x)的定義域為R,且$f(x)=\left\{\begin{array}{l}{2^{-x}}-1\;\;\;\;\;x≤0\\ f(x-2)\;\;x>0\end{array}\right.$.若方程$f(x)=\frac{3}{2}x+a$的兩個不同實根,則a的取值范圍為( 。
A.(-∞,3)B.(-∞,3]C.(0,3)D.(-∞,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=cosx•sin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)當方程f(x)-4a=0在閉區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上有兩個不同的根時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

1.計算:2lg25lg52lg55lg2=10.

查看答案和解析>>

科目: 來源: 題型:解答題

20.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3+t\\ y=\sqrt{3}t\end{array}\right.(t為參數(shù))$,以原點為極點,x軸正半軸為極軸建立極坐標系,圓C 的極坐標方程為$ρ=2\sqrt{3}sinθ$.
(1)寫出直線l的普通方程及圓C 的直角坐標方程;
(2)點P是直線l上的,求點P 的坐標,使P 到圓心C 的距離最。

查看答案和解析>>

同步練習冊答案