欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.若曲線C1:y=ax2(a>0)與曲線C2:y=e-x有公共切線,則a的取值范圍是[$\frac{{e}^{2}}{4}$,+∞).

分析 求出兩個(gè)函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)相等列方程,再由方程有根轉(zhuǎn)化為兩函數(shù)圖象有交點(diǎn)求得a的范圍

解答 解:設(shè)公切線與曲線C1切于點(diǎn)(x1,ax12),與曲線C2切于點(diǎn)(x2,${e}^{-{x}_{2}}$),
則曲線C1的導(dǎo)數(shù)為y′=2ax,C2的導(dǎo)數(shù)為y′=-e-x
則2ax1=-${e}^{-{x}_{2}}$=$\frac{{e}^{-{x}_{2}}-a{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$,
將${e}^{-{x}_{2}}$=-2ax1代入2ax1=$\frac{{e}^{-{x}_{2}}-a{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$,可得2x2=x1-2,
∴a=-$\frac{{e}^{-\frac{{x}_{1}}{2}+1}}{2{x}_{1}}$,
記f(x)=-$\frac{{e}^{-\frac{x}{2}+1}}{2x}$,
則f′(x)=$\frac{{e}^{-\frac{x}{2}+1}(x+2)}{4{x}^{2}}$,當(dāng)x∈(-∞,-2)時(shí),f′(x)<0.
當(dāng)x∈(-2,+∞)時(shí),f′(x)>0,
∴當(dāng)x=-2時(shí),f(x)min=f(-2)=-$\frac{{e}^{2}}{-4}$=$\frac{{e}^{2}}{4}$.
∴a的范圍是[$\frac{{e}^{2}}{4}$,+∞).
故答案為:[$\frac{{e}^{2}}{4}$,+∞)

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,綜合考查導(dǎo)數(shù)的應(yīng)用,綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若圓錐的側(cè)面展開(kāi)圖是半徑為2、圓心角為90°的扇形,則這個(gè)圓錐的全面積是$\frac{5}{4}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).
(1)求證:AC⊥平面BDEF;
(2)求二面角H-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知F1,F(xiàn)2分別為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)左、右焦點(diǎn),點(diǎn)P(1,y0)在橢圓上,且PF2⊥x軸,△PF1F2的周長(zhǎng)為6;
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)E、F是曲線C上異于點(diǎn)P的兩個(gè)動(dòng)點(diǎn),如果直線PE與直線PF的傾斜角互補(bǔ),證明:直線EF的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{4}+{y^2}$=1,過(guò)原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)).點(diǎn)D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M,N兩點(diǎn).
(1)設(shè)直線BD,AM的斜率分別為k1,k2,證明存在常數(shù)λ使得k1=λk2,并求出λ的值;
(2)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,AB是半徑為1的圓的直徑,過(guò)點(diǎn)A,B分別引弦AD和BE,相交于點(diǎn)C,過(guò)點(diǎn)C作CF⊥AB,垂足為點(diǎn)F.已知∠CAB=30°,∠DCB=60°.
(1)求∠EAB的大。
(2)求AC•AD+BC•BE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知i為虛數(shù)單位,則復(fù)數(shù)$\frac{1-3i}{1+i}$=( 。
A.2+iB.2-iC.-1-2iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{1}{2}$,點(diǎn)M在橢圓C上,點(diǎn)M到橢圓C的兩個(gè)焦點(diǎn)的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0),橢圓C2的方程為$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=λ(λ>0,且λ≠1),則稱(chēng)橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若橢圓C的任意一條切線l交橢圓C2于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),試研究當(dāng)切線l變化時(shí)△OMN面積的變化情況,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.函數(shù)y=lg(10x+1)-$\frac{x}{2}$的奇偶性是偶函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案