欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{1}{2}$,點(diǎn)M在橢圓C上,點(diǎn)M到橢圓C的兩個(gè)焦點(diǎn)的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0),橢圓C2的方程為$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若橢圓C的任意一條切線l交橢圓C2于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),試研究當(dāng)切線l變化時(shí)△OMN面積的變化情況,并給予證明.

分析 (Ⅰ)由橢圓的定義可得a=2,再由離心率公式和a,b,c的關(guān)系,即可得到b,進(jìn)而得到橢圓方程;
(Ⅱ)依題意,求得橢圓C2方程,當(dāng)切線l的斜率存在時(shí),設(shè)l的方程為:y=kx+m,代入橢圓C2方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,和點(diǎn)到直線的距離公式,結(jié)合面積公式,計(jì)算即可得到定值,討論直線的斜率不存在,同樣得到定值.

解答 解:(Ⅰ)依題意,2a=4,a=2,
∵$e=\frac{1}{2}$,∴c=1,b2=a2-c2=3,
∴橢圓C方程為:$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(Ⅱ)依題意,橢圓C2方程為:$\frac{x^2}{4}+\frac{y^2}{3}=3,即\frac{x^2}{12}+\frac{y^2}{9}=1$,
當(dāng)切線l的斜率存在時(shí),設(shè)l的方程為:y=kx+m,
由$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{12}+\frac{y^2}{9}=1\end{array}\right.$得(3+4k2)x2+8kmx+4m2-36=0,
由△=0得m2=4k2+3,
設(shè)M(x1,y1),N(x2,y2),
則${x_1}+{x_2}=\frac{-8km}{{3+4{k^2}}},{x_1}{x_2}=\frac{{4{m^2}-36}}{{3+4{k^2}}}$,
即有$|{MN}|=\sqrt{1+{k^2}}•|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}•\frac{{4\sqrt{3(12{k^2}+9-{m^2})}}}{{3+4{k^2}}}=\sqrt{1+{k^2}}•\frac{{4\sqrt{6}}}{|m|}$,
又點(diǎn)O到直線l的距離$d=\frac{|m|}{{\sqrt{{k^2}+1}}}$,
∴${S_{△OMN}}=\frac{1}{2}•|{MN}|•d=2\sqrt{6}$,
當(dāng)切線l的斜率不存在時(shí),l的方程為$x=±2,|{MN}|=2\sqrt{6}$,${S_{△OMN}}=2\sqrt{6}$,
綜上,當(dāng)切線l變化時(shí),△OMN的面積為定值$2\sqrt{6}$.

點(diǎn)評(píng) 本題考查橢圓的定義和方程及性質(zhì),主要考查橢圓方程的運(yùn)用,聯(lián)立直線方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,考查運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若a、b、c∈R,a>b,則下列不等式成立的是(  )
A.$\frac{1}{a}$<$\frac{1}$B.a2>b2C.$\frac{a}{{c}^{2}+1}$>$\frac{{c}^{2}+1}$D.|a|>|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若曲線C1:y=ax2(a>0)與曲線C2:y=e-x有公共切線,則a的取值范圍是[$\frac{{e}^{2}}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)A(1,$\frac{\sqrt{2}}{2}$),其焦距為2.
(1)求橢圓C1的方程;
(2)已知F1,F(xiàn)2分別是橢圓的左右焦點(diǎn),P 為直線x=2 上一點(diǎn).直線PF1,PF2與圓x2+y2=1的另外一個(gè)交點(diǎn)分別為M、N 兩點(diǎn),求證:直線MN 恒過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知一個(gè)科研小組有4位男組員和2位女組員,其中一位男組員和一位女組員不會(huì)英語(yǔ),其他組員都會(huì)英語(yǔ),現(xiàn)在要用抽簽的方法從中選出兩名組員組成一個(gè)科研攻關(guān)小組.
(Ⅰ)求組成攻關(guān)小組的成員是同性的概率;
(Ⅱ)求組成攻關(guān)小組的成員中有會(huì)英語(yǔ)的概率;
(Ⅲ)求組成攻關(guān)小組的成員中有會(huì)英語(yǔ)并且是異性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,且AC=BC=CC1=2,M是AB1與A1B的交點(diǎn),N是B1C1的中點(diǎn).
(Ⅰ)求證:MN∥平面ACC1A1;
 (Ⅱ)求三棱錐N-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的中心為O,右頂點(diǎn)為A,在線段OA上任意選定一點(diǎn)M(m,0)(0<m<2),過(guò)點(diǎn)M作與x軸垂直的直線交C于P,Q兩點(diǎn).
(Ⅰ)若橢圓C的長(zhǎng)半軸為2,離心率$\frac{{\sqrt{2}}}{2}$,
(ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(ⅱ)若m=1,點(diǎn)N在OM的延長(zhǎng)線上,且|OM|,|OA|,|ON|成等比數(shù)列,試證明直線PN與C相切;
(Ⅱ)試猜想過(guò)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn)G(x0,y0)(x0>0,y0>0)的切線方程,再加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.公元前3世紀(jì),古希臘歐幾里得在《幾何原本》里提出:“球的體積(V)與它的直徑(D)的立方成正比”,此即V=kD3,歐幾里得未給出k的值.17世紀(jì)日本數(shù)學(xué)家們對(duì)求球的體積的方法還不了解,他們將體積公式V=kD3中的常數(shù)k稱為“立圓率”或“玉積率”.類似地,對(duì)于等邊圓柱(軸截面是正方形的圓柱)、正方體也可利用公式V=kD3求體積(在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長(zhǎng)).假設(shè)運(yùn)用此體積公式求得球(直徑為a)、等邊圓柱(底面圓的直徑為a)、正方體(棱長(zhǎng)為a)的“玉積率”分別為k1、k2、k3,那么k1:k2:k3( 。
A.$\frac{1}{4}:\frac{1}{6}:\frac{1}{π}$B.$\frac{π}{6}:\frac{π}{4}$:2C.2:3:2πD.$\frac{π}{6}:\frac{π}{4}$:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)隨即變量X服從標(biāo)準(zhǔn)正態(tài)分布,已知P(X≤1.88)=0.97,則P(|X|≤1.88)=(  )
A.0.94B.0.97C.0.06D.0.03

查看答案和解析>>

同步練習(xí)冊(cè)答案