分析 解:(1)取PB中點(diǎn)G,連接AG,F(xiàn)G,由已知數(shù)據(jù)易證BD⊥平面PAB,進(jìn)而由面面垂直的判定定理可得平面PAB⊥平面ABCD;
(2)以B為原點(diǎn),BA為x軸,BD為y軸,建立如圖所示的空間直角坐標(biāo)系,向量法可得平面BEF的法向量$\overrightarrow{{n}_{1}}$=($\sqrt{3}$,-1,3),平面CBE的法向量$\overrightarrow{{n}_{2}}$=(0,0,1),由向量的夾角公式可得法向量夾角的余弦值,既得答案.
解答
解:(1)取PB中點(diǎn)G,連接AG,F(xiàn)G,
由三角形的中位線定理可得FG∥BC且FG=$\frac{1}{2}$BC,
∵AE∥BC且AE=$\frac{1}{2}$BC,∴FG∥AE且FG=AE,
∴AEFG是平行四邊形,∴EF∥AG,
又EF⊥BD,∴AG⊥BD,
由直徑所對(duì)的圓周角為90°可得∠ABD=90°,∴BD⊥AB,
又∵AG∩AB=A,∴BD⊥平面PAB,
∴平面PAB⊥平面ABCD;
(2)以B為原點(diǎn),BA為x軸,BD為y軸,建立如圖所示的空間直角坐標(biāo)系,
令A(yù)B=2,則B(0,0,0),A(2,0,0),D(0,2$\sqrt{3}$,0),P(1,0,$\sqrt{3}$),C(-2,2$\sqrt{3}$,0),
∴$\overrightarrow{BE}$=$\frac{1}{2}$($\overrightarrow{BA}$+$\overrightarrow{BD}$)=(1,$\sqrt{3}$,0),$\overrightarrow{EF}$=$\overrightarrow{AG}$=$\frac{1}{2}$($\overrightarrow{AP}$+$\overrightarrow{AB}$)=$\frac{\sqrt{3}}{2}$(-$\sqrt{3}$,0,1),
設(shè)平面BEF的法向量為$\overrightarrow{{n}_{1}}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{BE}=x+\sqrt{3}y=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{EF}=-\frac{3}{2}x+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,令x=$\sqrt{3}$可得$\overrightarrow{{n}_{1}}$=($\sqrt{3}$,-1,3),
又∵平面CBE的法向量$\overrightarrow{{n}_{2}}$=(0,0,1),
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{3\sqrt{13}}{13}$,
∴二面角C-BE-F的余弦值為$\frac{3\sqrt{13}}{13}$.
點(diǎn)評(píng) 本題考查空間向量與立體幾何,涉及面面垂直的判定和二面角的問題,屬中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 92,2 | B. | 92,2.8 | C. | 93,2 | D. | 93,2.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北邢臺(tái)市高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:填空題
方程
的解為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北邢臺(tái)市高一上學(xué)期月考一數(shù)學(xué)試卷(解析版) 題型:選擇題
若集合
,
,則
元素的個(gè)數(shù)為( )
A.2 B.4
C.5 D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com