分析 (I)利用$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{x=ρcosθ}\end{array}\right.$即可得出直角坐標方程.
(II)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入y2=8x化為3t2-16t-64=0.利用弦長|AB|=|t1-t2|即可得出.
解答 解:(I)由曲線C的極坐標方程為ρsin2θ=8cosθ,即ρ2sin2θ=8ρcosθ,化為y2=8x.
(II)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))代入y2=8x化為3t2-16t-64=0.
解得t1=8,t2=$-\frac{8}{3}$.
∴弦長|AB|=|t1-t2|=$8+\frac{8}{3}$=$\frac{32}{3}$.
點評 本題考查了把極坐標方程化為直角坐標方程、參數(shù)方程化為普通方程、直線與拋物線相交弦長問題,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com