欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.已知方程sin2x+cosx+a=0在區(qū)間[-$\frac{π}{3}$,0]上有實數(shù)解,求實數(shù)a的取值范圍.

分析 化簡可得a=-sin2x-cosx=(cosx-$\frac{1}{2}$)2-$\frac{5}{4}$,從而求實數(shù)a的取值范圍.

解答 解:∵sin2x+cosx+a=0,
∴a=-sin2x-cosx
=cos2x-cosx-1
=(cosx-$\frac{1}{2}$)2-$\frac{5}{4}$,
∵x∈[-$\frac{π}{3}$,0],
∴cosx∈[$\frac{1}{2}$,1],
∴-$\frac{5}{4}$≤a≤-1,
故實數(shù)a的取值范圍為[-$\frac{5}{4}$,-1].

點評 本題考查了三角函數(shù)的應(yīng)用及配方法的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知p:(5x-1)2>a2(a>0),q:2x2-3x+1>0,若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知實數(shù)x,y滿足:|x-y|<1,|2x+y|<1求證:|y|<1;
(2)已知a>b>c>d,求證:$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{1}{c-d}$≥$\frac{9}{a-d}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3.
(Ⅰ) 求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ) 若存在x∈[$\frac{1}{e}$,e](e是常數(shù),e=2.71828…)使不等式2f(x)≥g(x)成立,求實數(shù)a的取值范圍;
(Ⅲ) 證明對一切x∈(0,+∞)都有l(wèi)nx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四個實數(shù)根,則t的取值范圍為( 。
A.($\frac{{e}^{2}+1}{e}$,+∞)B.(-∞,-$\frac{{e}^{2}+1}{e}$)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)在定義域R內(nèi)可導(dǎo),若f(x)=f(2-x),且當(dāng)x∈(-∞,1)時,(x-1)f′(x)<0,設(shè)a=f(0),b=f$({\frac{1}{2}})$,c=f(3),則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若a,b是方程x2-30x+100=0的兩個實根,則lga+lgb=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知空間四邊形OABC,點M在線段OA上,且OM=2MA,點N為BC的中點,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則$\overrightarrow{MN}$=( 。
A.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{2}{3}$$\overrightarrow c$B.-$\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$D.$\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}$$\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)是R上的偶函數(shù),且在(-∞,0]上是減函數(shù),若f(a)≥f(2),則實數(shù)a的取值范圍是(  )
A.(-∞,2]B.(-∞,-2]∪[2,+∞)C.[-2,+∞)D.[-2,2]

查看答案和解析>>

同步練習(xí)冊答案