分析 (1)不等式即 f(x)=|x-2|+2x≥2x+1,由此求得它的解集.
(2)由題意可得|x-a|+2x≤0的解集為{x|x≤-1},故|-1-a|-2=0,求得a的值,再檢驗(yàn),進(jìn)一步確定a的值.
解答 解:(1)當(dāng)a=2時(shí),不等式 即 f(x)=|x-2|+2x≥2x+1,
∴x-2>1,或x-2<-1,求得x>3,或x<1,
故不等式的解集為{x|x>3,或x<1}.
(2)若f(x)≤0的解集為{x|x≤-1},即|x-a|+2x≤0的解集為{x|x≤-1},
∴|-1-a|-2=0,求a=1,或a=-3.
若a=1,不等式即|x-1|+2x≤0,即|x-1|≤-2x,∴2x≤x-1≤-2x,求得x≤-1,滿足條件.
若a=-3,不等式即|x+3|+2x≤0,即|x+3|≤-2x,2x≤x+3≤-2x,求得x≤-1,滿足條件.
綜上可得,a=1,或a=-3.
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化和分類討論的數(shù)學(xué)思想,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{{x\left|{-\frac{1}<x}\right.<0或0<x<\frac{1}{a}}\right\}$ | B. | $\left\{{x\left|{-\frac{1}{a}<x}\right.<0或0<x<\frac{1}}\right\}$ | ||
| C. | $\left\{{x\left|{x<-\frac{1}}\right.或x>\frac{1}{a}}\right\}$ | D. | $\left\{{x\left|{-\frac{1}{a}<x}\right.<\frac{1}}\right\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分非必要條件 | B. | 必要非充分條件 | ||
| C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | y2=4x,y2=-4x | B. | y2=6x,y2=-6x | C. | y2=10x,y2=-10x | D. | y2=12x,y2=-12x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 45 | B. | 50 | C. | 75 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{1}{10}$,+∞) | B. | 0<a<$\frac{1}{10}$ | C. | 0<a≤1 | D. | a>l |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com