欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知關(guān)于x的函數(shù)f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx,其中m∈R,其在點(diǎn)B(1,0)處的切線所對(duì)應(yīng)的函數(shù)為g(x)=0.
(1)已知函數(shù)f(x)的圖象與直線y=k2-2k無公共點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)已知p≤0,若對(duì)任意的x∈[1,2],總有f(x)≥$\frac{(p-2)x}{2}$+$\frac{p+2}{2x}$+2x-x2成立,求實(shí)數(shù)p的取值范圍.

分析 (1)首先需要將函數(shù)f(x)的解析式具體化,由g(x)=0,則f′(1)=0,又(1,0)點(diǎn)在f(x)的圖象上,即f(1)=0,則由$\left\{\begin{array}{l}{f}^{'}(1)=0\\ f(1)=0\end{array}\right.$可求m,若f(x)的圖象與直線y=k2-2k無公共點(diǎn),利用導(dǎo)數(shù)法求f(x)max即可;
(2)$f(x)≥\frac{(p-2)x}{2}+\frac{p+2}{2x}+2x-{x}^{2}$恒成立,即$2f(x)-(p-2)x-\frac{p+2}{x}-4x+2{x}^{2}≥0$,
設(shè)$F(x)=2f(x)-(p-2)x-\frac{p+2}{x}-4x+2{x}^{2}=2lnx-px-\frac{p+2}{x}$由題意,則F(x)的最小值F(x)min≥0,利用導(dǎo)數(shù)法求F(x)min,注意對(duì)p的分類討論.

解答 解:(1)函數(shù)f(x)=m(x2-4x+lnx)-(2m2+1)x+2lnx的導(dǎo)數(shù)
f′(x)=m(2x-4+$\frac{1}{x}$)-(2m2+1)+$\frac{2}{x}$,
由g(x)=0,
即:函數(shù)f(x)在B(1,0)處的切線斜率為0,
即有f′(1)=0,f(1)=0,
即為2m2+m-1=0,且2m2+3m+1=0,
解得m=-1,
即有f(x)=-x2+x+lnx,
f(x)=-x2+x+lnx的導(dǎo)數(shù)為f′(x)=-2x+1+$\frac{1}{x}$=$\frac{-2{x}^{2}+x+1}{2}$=$\frac{-(2x+1)(x-1)}{x}$,
當(dāng)x>1時(shí),f′(x)<0,f(x)單調(diào)遞減,
當(dāng)0<x<1時(shí),f′(x)>0,f(x)單調(diào)遞增.
則有f(x)在x=1處取得極大值,也為最大值,且為0,
由于函數(shù)f(x)的圖象與直線y=k2-2k無公共點(diǎn),則k2-2k>0,
解得k>2或k<0;
(2)設(shè)F(x)=f(x)-($\frac{(p-2)x}{2}$+$\frac{p+2}{2x}$+2x-x2 )=lnx-$\frac{p}{2}$x-$\frac{p+2}{2x}$,
F′(x)=$\frac{1}{x}$-$\frac{p}{2}$+$\frac{p+2}{2{x}^{2}}$=$\frac{-p{x}^{2}+2x+(p+2)}{2{x}^{2}}$,
當(dāng)p=0時(shí),F(xiàn)′(x)=$\frac{2x+2}{2{x}^{2}}$>0,F(xiàn)(x)在[1,2]遞增,F(xiàn)(1)=-1<0不成立,(舍)
當(dāng)p≠0時(shí)F′(x)=$\frac{-p(x+1)(x-\frac{p+2}{p})}{2{x}^{2}}$,
當(dāng)1+$\frac{2}{p}$<-1,即-1<p<0時(shí),F(xiàn)(x)在[1,2]遞增,F(xiàn)(1)=-p-1<0,不成立;
當(dāng)-1<1+$\frac{2}{p}$≤1,即p<-1時(shí),F(xiàn)(x)在[1,2]遞增,所以F(1)=-2p-2≥0,解得p≤-1,
所以,此時(shí)p<-1;
當(dāng)p=-1時(shí),F(xiàn)(x)在[1,2]遞增,成立;
綜上,p的取值范圍是(-∞,-1].

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義、直線方程、利用導(dǎo)數(shù)研究函數(shù)的極值與最值、恒成立問題、分類討論思想等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC中,2cos2C=8sin2$\frac{A+B}{2}$-7.
(1)求角C的大;
(2)求cos2A+2cos2B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),x∈[0,$\frac{π}{2}$]
(1)求函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-2|\overrightarrow a+\overrightarrow b|$的值域;
(2)設(shè)g(x)=$\overrightarrow{a}$•$\overrightarrow$+t|$\overrightarrow{a}$+$\overrightarrow$|,若關(guān)于x的方程g(x)+2=0有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.實(shí)數(shù)a,b∈R,i是虛數(shù)單位,若a+2i與2-bi互為共軛復(fù)數(shù),則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是遞增的等比數(shù)列,且a3+a6=9,a2a7=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)對(duì)于(2)中的Tn,若Tn<m-2014對(duì)一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.學(xué)校組織“踢毽球”大賽,某班為了選出一人參加比賽,對(duì)班上甲乙兩位同學(xué)進(jìn)行了8次測(cè)試,且每次測(cè)試之間是相互獨(dú)立.成績(jī)?nèi)缦拢海▎挝唬簜(gè)/分鐘)
8081937288758384
8293708477877885
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派那位學(xué)生參加比賽合適,請(qǐng)說明理由?
(3)若將頻率視為概率,對(duì)甲同學(xué)在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)高于79個(gè)/分鐘的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
(參考數(shù)據(jù):22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=CB=1,BA=2,AB∥DC,∠BCD=90°,點(diǎn)E、F、G分別是線段AB、PC、DE的中點(diǎn).
(Ⅰ)求證:FG∥平面PAB;
(Ⅱ)求證:DF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某種產(chǎn)品的廣告費(fèi)支出x與銷售額(單位:百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x24568
y3040506070
如果y與x之間具有線性相關(guān)關(guān)系.
(1)求這些數(shù)據(jù)的線性回歸方程;
(2)預(yù)測(cè)當(dāng)廣告費(fèi)支出為9百萬元時(shí)的銷售額.
附:線性回歸方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.向量$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,則|2$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案