分析 (1)由同圓中等圓弧的性質(zhì)可得∠ABC=∠BCD.由弦切角定理可得∠ACE=∠ABC,即可得出證明.
(2)利用弦切角定理可得∠CDB=∠BCE,由相似三角形的判定定理可得△BEC∽△CBD,由相似三角形的性質(zhì)可得$\frac{CD}{BC}=\frac{BC}{EB}$,即可求出BC.
解答 (1)證明:∵弦AC=BD,∴∠ABC=∠BCD.
又∵EC為圓的切線,∴∠ACE=∠ABC,
∴∠ACE=∠BCD.
(Ⅱ)解:∵EC為圓的切線,∴∠CDB=∠BCE,
由(Ⅰ)可得∠BCD=∠ABC.
∴△BEC∽△CBD,∴$\frac{CD}{BC}=\frac{BC}{EB}$,
∴BC2=CD•EB=1×9=9,解得BC=3.
點評 熟練掌握同圓中等圓弧的性質(zhì)、弦切角定理、相似三角形的判定和性質(zhì)定理是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{π}{2}$,0) | B. | ($\frac{π}{3}$,0) | C. | ($\frac{π}{6}$,0) | D. | ($\frac{π}{12}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -2e2π | C. | -2eπ | D. | -${e}^{\frac{π}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2π}{3}$ | B. | $\frac{3π}{4}$ | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2π | B. | π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com