【題目】已知函數(shù)
,其中
,
,且
的最小值為
,
的圖像的相鄰兩條對稱軸之間的距離為
.
(1)求函數(shù)
的解析式和單調遞增區(qū)間;
(2)在
中,角
,
,
所對的邊分別為
,
,
.且
,求
.
【答案】(1)
,單增區(qū)間為
(2)![]()
【解析】
(1)因為
的最小值為
,即可求得
,因為
的圖像的相鄰兩條對稱軸之間的距離為
,根據(jù)正弦函數(shù)圖像可知,函數(shù)的周期為:
,即可求得函數(shù)
的解析式和單調遞增區(qū)間;
(2)由余弦定理得:
,
,結合
,即可求得
,進而求得
.
(1)
的最小值為![]()
![]()
的圖像的相鄰兩條對稱軸之間的距離為
.
根據(jù)正弦函數(shù)圖像可知,函數(shù)的周期為:![]()
根據(jù)正弦函數(shù)最小正周期公式:
,故![]()
,
根據(jù)正弦函數(shù)圖像可知,其單調增區(qū)間為:
,![]()
解得函數(shù)
單增區(qū)間為:
.
(2)在
由余弦定理得:
,![]()
![]()
①
![]()
②
,
可得:
![]()
![]()
③
將①②代入③得: ![]()
,
可得:
,即
.
科目:高中數(shù)學 來源: 題型:
【題目】某學校高二年級的第二學期,因某學科的任課教師王老師調動工作,于是更換了另一名教師趙老師繼任.第二學期結束后從全學年的該門課的學生考試成績中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
![]()
學校秉持均衡發(fā)展、素質教育的辦學理念,對教師的教學成績實行績效考核,績效考核方案規(guī)定:每個學期的學生成績中與其中位數(shù)相差在
范圍內(含
)的為合格,此時相應的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學績效考核成績的期望值哪個大?
(Ⅱ)是否有
的把握認為“學生成績取得優(yōu)秀與更換老師有關”.
附:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓
的中心在坐標原點
,其中一個焦點為圓
的圓心,右頂點是圓
與
軸的一個交點.已知橢圓
與直線
相交于
、
兩點,延長
與橢圓
交于點
.
(1)求橢圓的方程;
(2)求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐
的底面是平行四邊形,
是
的中點,
,
.
![]()
(1)求證:
平面
;
(2)若
,點
在側棱
上,且
,二面角
的大小為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:極坐標與參數(shù)方程]
在直角坐標系
中,曲線
的參數(shù)方程為
(
是參數(shù)),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的極坐標方程和曲線
的直角坐標方程;
(2)若射線
與曲線
交于
,
兩點,與曲線
交于
,
兩點,求
取最大值時
的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的
個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為
,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.
(1)當
取何值時,有3個坑要補播種的概率最大?最大概率為多少?
(2)當
時,用
表示要補播種的坑的個數(shù),求
的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲是某商店2018年(按360天計算)的日盈利額(單位:萬元)的統(tǒng)計圖.
![]()
(1)請計算出該商店2018年日盈利額的平均值(精確到0.1,單位:萬元):
(2)為了刺激消費者,該商店于2019年1月舉行有獎促銷活動,顧客凡購買一定金額的高品后均可參加抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店對前5天抽獎活動的人數(shù)進行統(tǒng)計如下表:(
表示第
天參加抽獎活動的人數(shù))
| 1 | 2 | 3 | 4 | 5 |
| 50 | 60 | 70 | 80 | 100 |
經過進一步統(tǒng)計分析,發(fā)現(xiàn)
與
具有線性相關關系.
(。└鶕(jù)上表提供的數(shù)據(jù),用最小二乘法求出
關于
的線性回歸方程
:
(ⅱ)該商店采取轉盤方式進行抽獎(如圖乙),其中轉盤是個八等分的圓.每位顧客最多兩次抽獎機會,若第一次抽到獎,則抽獎終止,若第一次未抽到獎,則再提供一次抽獎機會.抽到一等獎的獎品價值128元,抽到二等獎的獎品價值32元.若該商店此次抽獎活動持續(xù)7天,試估計該商店在此次抽獎活動結束時共送出價值為多少元的獎品(精確到0.1,單位:萬元)?
![]()
(3)用(1)中的2018年日盈利額的平均值去估計當月(共31天)每天的日盈利額.若商店每天的固定支出約為1000元,促銷活動日的日盈利額比平常增加20%,則該商店當月的純利潤約為多少萬元?(精確到0.1,純利潤=盈利額-固定支出-抽獎總獎金數(shù))
參考公式及數(shù)據(jù):
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了保障全國第四次經濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記. 由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗. 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計 |
企事業(yè)單位 | 40 | 10 | 50 |
個體經營戶 | 100 | 50 | 150 |
合計 | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有
的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機選擇 1 家企事業(yè)單位,3 家個體經營戶作為普查對象,入戶登記順利的對象數(shù)記為
, 寫出
的分布列,并求
的期望值.
附:
| 0.10 | 0.010 | 0.001 |
| 2.706 | 6.635 | 10.88 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com