| A. | $\frac{2\sqrt{3}}{3}$ | B. | 2$\sqrt{3}$ | C. | 2 | D. | 3 |
分析 不妨設P在右支上,由雙曲線的定義可得PF1-PF2=2a,再由條件分別求得△PF1F2三邊長,運用三角形的海倫面積公式,結合離心率公式,解方程即可得到所求值.
解答 解:不妨設P在右支上,則PF1-PF2=2a,
又PF1+PF2+F1F2=6c,即PF1+PF2=4c,
解得PF1=a+2c,PF2=2c-a,
由海倫面積公式可得,△PF1F2的面積為
S△=$\sqrt{3c(3c-2c)(3c-a-2c)(3c-2c+a)}$=$\sqrt{3{c}^{2}({c}^{2}-{a}^{2})}$,
由題意可得$\frac{2\sqrt{3}}{3}$a2=$\sqrt{3{c}^{2}({c}^{2}-{a}^{2})}$,
兩邊平方可得,9c4-9a2c2-4a4=0,
由e=$\frac{c}{a}$,可得,9e4-9e2-4=0,
解得e2=$\frac{4}{3}$,即有e=$\frac{2\sqrt{3}}{3}$.
故選A.
點評 本題考查雙曲線的定義、方程和性質,主要考查離心率的求法,同時考查三角形的面積公式的運用,屬于中檔題..
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | S正<S球<S柱 | B. | S正<S柱<S球 | C. | S球<S柱<S正 | D. | S球<S正<S柱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com