分析 本題可為三個數的和,可進行變形a+$\frac{1}{b(a-b)}$=a-b+b+$\frac{1}{b(a-b)}$,用基本不等式求出最小值,即可證明結論.
解答 證明:∵a>b>0,
∴a+$\frac{1}{b(a-b)}$=a-b+b+$\frac{1}{b(a-b)}$≥$\root{3}{(a-b)b•\frac{1}{b(a-b)}}$=3
當且僅當a-b=b=$\frac{1}{b(a-b)}$時取等號,
∴a+$\frac{1}{b(a-b)}$的最小值為3.
點評 本題考查三元的基本不等a+b+c≥$3\root{3}{abc}$在求解最值中的應用,解題的關鍵是配湊基本不等式的應用條件.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com