分析 (1)推導(dǎo)出四邊形AMC1P為平行四邊形,從而AP∥C1M,由此能證明AP∥平面C1MN.
(2)連結(jié)AC,推導(dǎo)出MN⊥BD,DD1⊥MN,從而MN⊥平面BDD1B1,由此能證明平面B1BDD1⊥平面C1MN.
解答
證明:(1)在正方體ABCD-A1B1C1D1中
∵M(jìn),N,P分別為棱AB,BC,C1D1的中點(diǎn),
∴AM=PC1,
又AM∥CD,PC1∥CD,故AM∥PC1,
∴四邊形AMC1P為平行四邊形,
∴AP∥C1M,
又AP?平面C1MN,C1M?平面C1MN,
∴AP∥平面C1MN.
(2)連結(jié)AC,在正方形ABCD中,AC⊥BD,
又M、N分別為棱AB、BC的中點(diǎn),∴MN∥AC,
∴MN⊥BD,
在正方體ABCD-A1B1C1D1中,DD1⊥平面ABCD,
又MN?平面ABCD,∴DD1⊥MN,
而DD1∩DB=D,DD1、DB?平面BDD1B1,
∴MN⊥平面BDD1B1,
又MN?平面C1MN,∴平面B1BDD1⊥平面C1MN.
點(diǎn)評(píng) 本題考查線面平行的證明,考查面面垂直的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [1,e] | B. | $(1+\frac{1}{e},e]$ | C. | (1,e] | D. | $[1+\frac{1}{e},e]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1998立方尺 | B. | 2012立方尺 | C. | 2112立方尺 | D. | 2324立方尺 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $-\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 60 | B. | 61 | C. | 62 | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com